Photonics Research, 2019, 7 (12): 12001473, Published Online: Nov. 21, 2019  

Hybridization of different types of exceptional points Download: 589次

Author Affiliations
1 Department of Emerging Materials Science, DGIST, Daegu 42988, South Korea
2 Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
3 Samsung Electro-Mechanics, Suwon 16674, South Korea
4 e-mail: innissan@dgist.ac.kr
5 e-mail: chmkim@dgist.ac.kr
Copy Citation Text

Jinhyeok Ryu, Sunjae Gwak, Jaewon Kim, Hyeon-Hye Yu, Ji-Hwan Kim, Ji-Won Lee, Chang-Hwan Yi, Chil-Min Kim. Hybridization of different types of exceptional points[J]. Photonics Research, 2019, 7(12): 12001473.

References

[1] KatoT., Perturbation Theory for Linear Operators (Springer, 1966).

[2] W. D. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E, 2000, 61: 929-932.

[3] M. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 2004, 54: 1039-1047.

[4] H. Cartarius, J. Main, G. Wunner. Exceptional points in atomic spectra. Phys. Rev. Lett., 2007, 99: 173003.

[5] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, S. Rotter. Pump-induced exceptional points in lasers. Phys. Rev. Lett., 2012, 108: 173901.

[6] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. Türeci, G. Strasser, K. Unterrainer, S. Rotter. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun., 2014, 5: 4034.

[7] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 2001, 86: 787-790.

[8] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 2016, 537: 76-79.

[9] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, A. Richter. Observation of a chiral state in a microwave cavity. Phys. Rev. Lett., 2003, 90: 034101.

[10] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 2009, 103: 134101.

[11] Y. Shin, H. Kwak, S. Moon, S.-B. Lee, J. Yang, K. An. Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells. Sci. Rep., 2016, 6: 38826.

[12] W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, H. Chen. Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system. Phys. Rev. Lett., 2018, 121: 124501.

[13] T. Stehmann, W. D. Heiss, F. G. Scholtz. Observation of exceptional points in electronic circuits. J. Phys. A, 2004, 37: 7813-7819.

[14] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat. Commun., 2018, 9: 2182.

[15] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80: 5243-5246.

[16] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity-time symmetry in optics. Nat. Phys., 2010, 6: 192-195.

[17] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, X. Zhang. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun., 2016, 7: 11110.

[18] J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, H. Schomerus. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 2011, 84: 023845.

[19] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 2011, 84: 063828.

[20] S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, H. Cao. Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photon. Rev., 2018, 12: 1800027.

[21] W. R. Sweeney, C. W. Hsu, S. Rotter, A. D. Stone. Perfectly absorbing exceptional points and chiral absorbers. Phys. Rev. Lett., 2019, 122: 093901.

[22] J.-W. Ryu, S.-Y. Lee, S. W. Kim. Coupled nonidentical microdisks: avoided crossing of energy levels and unidirectional far-field emission. Phys. Rev. A, 2009, 79: 053858.

[23] S. V. Boriskina. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Opt. Lett., 2007, 32: 1557-1559.

[24] M. Benyoucef, J.-B. Shim, J. Wiersig, O. G. Schmidt. Quality-factor enhancement of supermodes in coupled microdisks. Opt. Lett., 2011, 36: 1317-1319.

[25] J.-B. Shim, J. Wiersig. Semiclassical evaluation of frequency splittings in coupled optical microdisks. Opt. Express, 2013, 21: 24240-24253.

[26] D. W. Schönleber, A. Eisfeld, R. El-Ganainy. Optomechanical interactions in non-Hermitian photonic molecules. New J. Phys., 2016, 18: 045014.

[27] C.-H. Yi, J. Kullig, M. Hentschel, J. Wiersig. Non-Hermitian degeneracies of internal-external mode pairs in dielectric microdisks. Photon. Res., 2019, 7: 464-472.

[28] J. Kullig, C.-H. Yi, M. Hentschel, J. Wiersig. Exceptional points of third-order in a layered optical microdisk cavity. New J. Phys., 2018, 20: 083016.

[29] C.-H. Yi, J. Kullig, J. Wiersig. Pair of exceptional points in a microdisk cavity under an extremely weak deformation. Phys. Rev. Lett., 2018, 120: 093902.

[30] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 2016, 93: 033809.

[31] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112: 203901.

[32] N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, Q. Song. Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point. Sci. Rep., 2015, 5: 11912.

[33] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res., 2018, 6: A23-A30.

[34] N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, Q. Song. Far-field single nanoparticle detection and sizing. Optica, 2017, 4: 1151-1156.

[35] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548: 192-196.

[36] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 2015, 114: 053903.

[37] S. Sunada. Large Sagnac frequency splitting in a ring resonator operating at an exceptional point. Phys. Rev. A, 2017, 96: 033842.

[38] J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, M. Khajavikhan. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett., 2017, 42: 1556-1559.

[39] LaiY.-H.LuY.-K.SuhM.-G.VahalaK., “Enhanced sensitivity operation of an optical gyroscope near an exceptional point,” arXiv:1901.08217 (2019).

[40] H. Eleuch, I. Rotter. Clustering of exceptional points and dynamical phase transitions. Phys. Rev. A, 2016, 93: 042116.

[41] J. Kullig, C.-H. Yi, J. Wiersig. Exceptional points by coupling of modes with different angular momenta in deformed microdisks: a perturbative analysis. Phys. Rev. A, 2018, 98: 023851.

[42] Z. Lin, A. Pick, M. Lončar, A. W. Rodriguez. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett., 2016, 117: 107402.

[43] H. Jing, S. K. Özdemir, H. Lü, F. Nori. High-order exceptional points in optomechanics. Sci. Rep., 2017, 7: 3386.

[44] W. D. Heiss, G. Wunner. Resonance scattering at third-order exceptional points. J. Phys. A, 2015, 48: 345203.

[45] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, C. T. Chan. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X, 2016, 6: 021007.

[46] J. Schnabel, H. Cartarius, J. Main, G. Wunner, W. D. Heiss. PT-symmetric waveguide system with evidence of a third-order exceptional point. Phys. Rev. A, 2017, 95: 053868.

[47] W. D. Heiss, G. Wunner. A model of three coupled wave guides and third order exceptional points. J. Phys. A, 2016, 49: 495303.

[48] R. El-Ganainy, M. Khajavikhan, L. Ge. Exceptional points and lasing self-termination in photonic molecules. Phys. Rev. A, 2014, 90: 013802.

[49] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548: 187-191.

[50] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun., 2019, 10: 832.

[51] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87: 61-111.

[52] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Ylmaz, J. Wiersig, S. Rotter, L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 2016, 113: 6845-6850.

[53] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 2002, 5: 53-60.

[54] H. Eleuch, I. Rotter. Resonances in open quantum systems. Phys. Rev. A, 2017, 95: 022117.

[55] I. Rotter. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A, 2009, 42: 153001.

[56] J. A. Nelder, R. Mead. A simplex method for function minimization. Comput. J., 1965, 7: 308-313.

[57] M. Hentschel, H. Schomerus, R. Schubert. Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhys. Lett., 2003, 62: 636-642.

[58] J. Wiersig. Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A, 2014, 89: 012119.

[59] G. Demange, E.-M. Graefe. Signatures of three coalescing eigenfunctions. J. Phys. A, 2011, 45: 025303.

[60] J. T. Chalker, B. Mehlig. Eigenvector statistics in non-Hermitian random matrix ensembles. Phys. Rev. Lett., 1998, 81: 3367-3370.

[61] M. Müller, F.-M. Dittes, W. Iskra, I. Rotter. Level repulsion in the complex plane. Phys. Rev. E, 1995, 52: 5961-5973.

[62] Y. V. Fyodorov, D. V. Savin. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 2012, 108: 184101.

[63] A. M. Armani, K. J. Vahala. Heavy water detection using ultra-high-Q microcavities. Opt. Lett., 2006, 31: 1896-1898.

Jinhyeok Ryu, Sunjae Gwak, Jaewon Kim, Hyeon-Hye Yu, Ji-Hwan Kim, Ji-Won Lee, Chang-Hwan Yi, Chil-Min Kim. Hybridization of different types of exceptional points[J]. Photonics Research, 2019, 7(12): 12001473.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!