强激光与粒子束, 2014, 26 (10): 100201, 网络出版: 2014-12-08   

面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术

Super-power repetitive Z-pinch driver for fusion-fission reactor
作者单位
中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621900
摘要
针对Z箍缩驱动聚变裂变混合能源系统对驱动器的总体要求,对可能的技术路线进行了分析评述,结合当前在单脉冲超高功率Z箍缩驱动器和重复频率脉冲功率技术方面的研究基础,提出了混合模式直线变压驱动器概念设计思想,分析了主要的技术难点,明确了相应的关键技术攻关方向,同时对Z箍缩驱动器的总体发展计划提出了建议。
Abstract
According to the demands of Z-pinch driven fusion-fission reactor(Z-FFR), several possible technical schemes are analyzed and evaluated. A novel technical scheme named mixed-mode LTD is proposed. A conceptual design of Z-FFR driver is presented based on mixed-mode LTD scheme. The main directions for key technologies development are pointed out. A road-map is proposed for the super-power Z-pinch driver development.
参考文献

[1] Sanford T W L, Allshouse G O, Marder B M, et al. Improved symmetry greatly increases X-ray power from wire-array Z-pinches[J]. Physical Review Letters 1996, 77 (25):5063-5066.

[2] Deeney C, Nash T J, Spielman R B, et al. Power enhancement by increasing the initial array radius and wire number of tungsten Z-pinch[J]. Physical Review E, 1997, 56(5): 5945-5958.

[3] Sanford T W L, Mock R C, Nash T J, et al. Systematic trends in X-ray emission characteristics of variable-wire-number, fixed-mass, aluminum-array, Z-pinch implosions[J]. Physics of Plasmas, 1999, 6(4):1270-1293.

[4] Bailey J E, Chandler G A, Cohen D, et al. Radiation science using Z-pinch X rays[J]. Physics of Plasmas, 2002, 9(5):2186-2194.

[5] Nash T J, Derzon M S, Chandler G A, et al. High-temperature dynamic hohlraums on the pulsed power driver Z[J]. Physics of Plasmas, 1999, 6(5):2023-2029.

[6] Hammer J H, Tabak M, Wilks S C, et al. High yield inertial confinement fusion target design for a Z-pinch-driven hohlraum[J]. Physics of Plasmas, 1999, 6(5):2129-2136.

[7] Sanford T W L, Olson R E, Mock R C, et al. Dynamics of a Z-pinch X-ray source for heating inertial-confinement-fusion relevant hohlraums to 120~260eV[J]. Physics of Plasmas, 2000, 7(11): 4669-4682.

[8] Bennett G R, Vesey R A, Cuneo M E, et al. Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z[J]. Physics of Plasmas, 2003, 10(9):3717-3727.

[9] Slutz S A, Bailey J E, Chandler G A, et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 2003, 10(5):1875-1882.

[10] Vesey R A, Cuneo M E, Porter J L, et al. Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z[J]. Physics of Plasmas, 2003, 10(5):1854-1860.

[11] Stygar W A, Cuneo M E, Vesey R A. Theoretical Z-pinch scaling relations for thermonuclear-fusion experiments[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 1-21.

[12] Rochau G E, Morrow C W. A concept for containing inertial fusion energy pulses in a Z-pinch-driven power plant[J]. Fusion Science and Technology, 2003, 43(3):447-455.

[13] Olson R E. Target physics scaling for Z-pinch inertial fusion energy[J]. Fusion Science and Technology, 2005, 47(4) :1147-1151.

[14] Linford R, Betti R, Dahlburg J. A review of the U. S. department of energy’s inertial fusion energy program[J]. Journal of Fusion Energy, 2003, 22(2): 93-126.

[15] Meyerhofer D D, Sethian J D, Lindl J D. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme[J]. Plasma Physics and Controlled Fusion, 2003, 45(12): A217-A234.

[16] Vesey R A, Herrmann M C, Lemke R W, et al. Target design for high fusion yield with the double Z-pinch-driven hohlraum[J]. Physics of Plasmas, 2007, 14: 056302.

[17] Kingsep A, Anan'ev S, Bakshaev Y, et al. Pulsed power experiments at the Kurchatov institute aimed at ICF[C]//Proc 14th IEEE International Pulsed Power Conference. 2007:1761-176.

[18] Sharkov B Y. Status and perspective of nuclear fusion energy with inertial confinement[M]. Beijing: Atomic Energy Publishing Company, 2008.

[19] 彭先觉, 华欣生. 快Z箍缩--有前景的聚变能源新途径[J]. 中国工程学,2008, 10(1): 47-53.(Peng Xianjue, Hua Xinsheng. Fast Z-pinch-A new approach for promising fusion energy. Engineering Science, 2008, 10(1): 47-53)

[20] 彭先觉. Z箍缩-核聚变-核能源: 一条值得探求的科技之路[R]. 中国工程物理研究院年度科技报告. 2008.(Peng Xianjue, Z-pinch, nuclear fusion, nuclear energy-A pursuable road of science and technology. Annual Science and Technology Report of CAEP. 2008)

[21] Peng Xianjue. Introduction of fusion-fission mixture reactor based on Z-pinch[C]//2010 Sino-Russian Z-pinch IFE Conf. 2010.

[22] Martin T H. Design and performance of the Sandia laboratories Hermes II flash X-ray generator[J]. IEEE Trans on Nucl Sci, 1969, 16(3): 59.

[23] 王淦昌. 高功率粒子束及其应用[C]//全国高功率粒子束十年文集. 1995: 1-21.(Wang Ganchang. High power particle beams and their applications//The Dacade Selected Works of High Pulsed Power in China. 1995:1-21)

[24] Frazier G B, Ashby S R, Demeter L J, et al. Eagle and double-eagle[C]//Proc 4th IEEE International Pulsed Power Conference. 1983:583-589.

[25] Boller J R, Burton J K, Jr Shipman J D. Status of the upgraded version of the NRL Gamble II pulse power generator [C]//Proc 2nd IEEE International Pulsed Power Conference.1979:205-208.

[26] 邱爱慈. 闪光-II加速器[C]//全国高功率粒子束十年文集. 1995:22-34.(Qiu Aici. Flash-II Accelerator//The Dacade Selected Works of High Pulsed Power in China. 1995: 22-31)

[27] Johnson D L. Initial Proto II pulsed power tests[C]//Proc 1st IEEE International Pulsed Power Conference.1976.

[28] Basenkov S V, Gusev O A, Istomin J A, et al. Accelerator module of “Angara-5”[C]//Proc 2nd IEEE International Pulsed Power Conference. 1979:25-30.

[29] Bloomquist D D, Stinnett R W, McDaniel D H, et al. Saturn, a large area X-ray simulation accelerator[C]//Proc 6th IEEE International Pulsed Power Conference. 1987:310-317.

[30] Turman B N, Martin T H, Neau E L, et al. PBFA II, a 100 TW pulsed power driver for the inertial confinement fusion program[C]//Proc 5th IEEE International Pulsed Power Conference.1985:155-161.

[31] Spielman R B, Long F, Martin T H, et al. PBFA II-Z: A 20-MA driver for Z-pinch experiments[C]//Proc 10th IEEE International Pulsed Power Conference. 1995:396-404.

[32] Weinbrecht E A, McDaniel D H, Bloomquist D D. The Z refurbishment project (ZR) at Sandia national laboratories[C]//Proc 14th IEEE International Pulsed Power Conference. 2003:157-162.

[33] Ramirez J J, Prestwich K R, Burgess E L, et al. The Hermes-Ⅲ program[C]//Proc 6th IEEE International Pulsed Power Conference. 1987:294-299.

[34] Bastrikov A N, Kim A A, Kovalchuk B M, et al. Fast primary energy storage based on linear transformer scheme[C]//Proc 11th IEEE International Pulsed Power Conference. 1997: 489-497.

[35] Kim A A, Kovalchuk B M, Bastrikov A N, et al. 100 ns current rise time LTD stage[C]//Proc 13th IEEE International Pulsed Power Conference. 2001:294-299.

[36] Kim A A, Bastrikov A N, Volkov S N, et al. 100 GW fast LTD stage[C]//Proc 10th Symposium on High Current Electronics. 2004:141-144.

[37] Rogowski S T, Fowler W E. Peration and performance of the first high current LTD at Sandia national laboratories[C]//Proc 15th IEEE International Pulsed Power Conference. 2005:155-157.

[38] Sandia news[EB/OL]. www.sandia.gov.

[39] 周良骥, 邓建军, 陈林, 等. 快脉冲直线变压器驱动源模块的原理及实验[J]. 强激光与粒子束, 2006, 18 (10):1749-1752. (Zhou Liangji, Deng Jianjun, Chen Lin, et al. Design and experiment of linear transformer driver stage. High Power Laser and Particle Beams, 2006, 18 (10):1749-1752)

[40] 周良骥. 快脉冲直线变压器驱动源(LTD)技术初步研究[D]. 北京:中国工程物理研究院北京研究生部,2006.(Zhou Liangji. Initial research of fast linear transformer driver(LTD). Beijing: Graduated School of China Academy of Engineering Physics, 2006)

[41] 周良骥, 邓建军, 陈林, 等. 国际快脉冲直线变压器驱动源技术研究进展[J]. 强激光与粒子束, 2008, 20 (12):1947-1953. (Zhou Liangji, Deng Jianjun, Chen Lin, et al. Status of linear transformer driver research. High Power Laser and Particle Beams, 2008, 20 (12):1947-1953)

[42] 邹文康, 周良骥, 陈林,等. 100 GW直线变压器驱动源的物理设计与模拟[J]. 强激光与粒子束,2008,20(2):327-330.(Zou Wenkang, Chen Lin, et al. Physical design and simulation for a 100 GW LTD system. High Power Laser and Particle Beams, 2008,20 (2):327-330)

[43] 周良骥, 邓建军, 陈林, 等. 1 MA直线型变压器驱动源模块设计[J]. 强激光与粒子束, 2010, 22 (3):465-468. (Zhou Liangji, Deng Jianjun, Chen Lin, et al. Design of 1 MA linear transformer driver stage. High Power Laser and Particle Beams, 2010, 22 (3):465-468)

[44] 陈林,周良骥,谢卫平,等. 100 kA快脉冲直线变压器驱动源模块[J]. 强激光与粒子束, 2010, 22 (6):1407-1410. (Chen Lin, Zhou Liangji, Xie Weiping, et al. Research on 100 kA fast linear transformer driver stage. High Power Laser and Particle Beams, 2010, 22 (6):1407-1410)

[45] 梁天学,姜晓峰,孙凤举,等. 300 kA直线型变压器驱动源模块实验研究[J]. 强激光与粒子束, 2012, 24 (3):655-658. (Liang Tianxue, Jiang Xiaofeng, Sun Fengju, et al. Experimental investigation of 300 kA fast linear transformer driver stage. High Power Laser and Particle Beams, 2012, 24 (3):655-658)

[46] 孙凤举,邱爱慈,姜晓峰,等. 20 MA/300 ns Marx型直接驱动Z箍缩脉冲源[J]. 强激光与粒子束, 2012, 24(4):933-937. (Sun Fengju, Qiu Aici, Jiang Xiaofeng, et al. 20 MA/300 ns direct-driven Z-pinch Marx-based pulsed power driver. High Power Laser and Particle Beams, 2012, 24(4):933-937)

[47] 丛培天,邱爱慈. 快脉冲直线变压器气体开关技术[J]. 强激光与粒子束, 2012, 24 (6):1263-1268. (Cong Peitian, Qiu Aici. Review on gas switches developed for fast linear transformer driver. High Power Laser and Particle Beams, 2012, 24(6):1263-1268)

[48] 孙铁平,丛培天,曾正中,等. 快前沿直线脉冲变压器单级模块开关触发时延分散性实验研究[J]. 强激光与粒子束, 2011, 23(12):3426-3430.(Sun Tieping, Cong Peitian, Zeng Zhengzhong, et al. Self-breakdown charicteristic of multi-gap switch for fast linear transformer driver. High Power Laser and Particle Beams, 2011, 23(12):3426-3430)

[49] Alexandrov V V, Azizov E A, Alikhanov S G, et al. Superfast liner implosion physics study and development of X-ray facility based on 900 MJ inductive store[C]//Proc 15th IEEE International Pulsed Power Conference. 1999:754-757.

[50] Grabovski E. Investigations of thermonuclear power engineering based on Z-pinches in Russia and studies carried out on the Angara-5 facility[C]//CAEP Annual Conference on Science & Technology. Mianyang, 2012.

[51] Grabovski E. Project of thermonuclear generator Baikal[C]//International Conference 16th Khariton’s Topical Scientiflc Readings “High Power Electrophysics” . 2014.

[52] Keith Matzen, Mark Herrmann, Michael Cuneo, et al. Pulsed power inertial fusion energy[C]//Prospects for ICF Energy Systems NAS. 2011.

[53] Stygar W A, Cuneo M E, Headley D I, et al. Architecture of petawatt-class Z-pinch accelerators[J]. Physical Review Special Topics-Accelerators and Beams, 2007,10: 030401.

[54] Olson C L, Mazarakis M G, Fowler W E,et al. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield[R]. SAND2007-0059, 2007.

[55] 邓建军, 石金水, 曹科峰,等. 流体物理研究所高功率脉冲技术研究进展[J]. 物理, 2009, 38 (12) :901-907.(Deng Jianjun, Shi Jinshui, Cao Kefeng, et al. Pulsed power research at the institute of fluid physics. Physics, 2009, 38 (12) :901-907)

[56] Xia Minghe, Xie Weiping, Li Hongtao, et al. Investigation of a lower prepulse water dielectric self-break switch[C]//Proc 15th International Conference on High-Power Particle Beams. 2004:348-351.

[57] He An, Li Fengping, Deng Jianjun. Primary investigation into the laser triggering multi-gap multi-channel gas switch in a single test module facility[J]. Plasma Science and Technology, 2006, 8(5):602-606.

[58] 李洪涛, 王玉娟, 夏明鹤, 等. 高功率Z-pinch装置5MV主开关及开关区设计[J]. 强激光与粒子束, 2006, 18 (3) : 459-462. (Li Hongtao, Wang Yujuan, Xia Minghe, et al. Design of the switch and switch section for high power Z-pinch facility. High Power Laser and Particle Beams, 2006, 18 (3) : 459-462)

[59] Li Hongtao, Deng Jianjun, Wang Yujuan. Development of a 4 MV laser-triggered multi-stage switch[J].Plasma Science and Technology, 2008, 10(2): 235-239.

[60] Li Hongtao, Xie Weiping, Feng Shuping. Development of a high-reliability low-jitter 6 MV/300 kJ Marx generator[J].Plasma Sources Sci Technol, 2008,17:015001.

[61] Li Hongtao, Feng Shuping, Xie Weiping. Development of the prototype module of the 6MV/10MA Z-pinch test stand[C]//Proc 17th International Conference on High Power Particle Beams. 2008.

[62] Xia Minghe, Li Hongtao, Feng Shuping. Investigation of 4 MV coaxial-triplate water self-breaking switch[C]//Proc 17th International Conference on High Power Particle Beams. 2008.

[63] 丰树平,李洪涛,谢卫平, 等. Z箍缩初级实验平台模块样机[J]. 强激光与粒子束, 2009, 21(3):463-467. (Feng Shuping, Li Hongtao, Xie Weiping, et al. Development of prototype module of Z-pinch primary test stand. High Power Laser and Particle Beams, 2009,21(3):463-467)

[64] 丰树平,李洪涛,曹文彬. 等. Z箍缩实验装置高压低抖动Marx发生器[J]. 强激光与粒子束, 2009,21(1): 152-156. (Feng Shuping, Li Hongtao, Cao Wenbin, et al. High voltage low jitter Marx generator of prototype module of primary test stand. High Power Laser and Particle Beams, 2009,21(1): 152-156)

[65] 关永超,王勐,丰树平,等. 高功率低阻抗三平板传输线的设计[J]. 强激光与粒子束, 2010, 22(3):519-523. (Guan Yongchao, Wang Meng, Feng, Shuping, et al. Design for high power and low impedance triplate transmission line. High Power Laser and Particle Beams, 2010,22(3):519-523)

[66] 夏明鹤,计策,王玉娟, 等. PTS装置脉冲输出开关[J]. 强激光与粒子束, 2012, 24(10):2516-2520. (Xia Minghe, Ji Ce, Wang, Yujuan, et al. Pulse output switch of primary test stand. High Power Laser and Particle Beams, 2012,24(10):2516-2520)

[67] 夏明鹤,计策,王玉娟,王勐. 等. PTS装置工作模式及波形调节[J]. 强激光与粒子束, 2012, 24(11):2768-2772. (Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand. High Power Laser and Particle Beams, 2012, 24(11):2768-2772)

[68] 夏明鹤,姚斌,傅贞, 等. 4 MV同轴-三平板型水介质自击穿开关的电路模拟与实验[J]. 强激光与粒子束, 2010, 22(7):1292-1296. (Xia Minghe,Yao Bin, Fu Zhen, et al. Experiments and simulations of 4 MV coax-to-triplate multi-channel water self-breaking switch. High Power Laser and Particle Beams, 2010, 22(7):1292-1296)

[69] 计策,丰树平,夏明鹤,等. Marx发生器同步性对PTS装置性能的影响[J]. 强激光与粒子束, 2012, 24(3):685-688. (Ji Ce, Feng Shuping, Xia Minghe, et al. Effect of synchronization of Marx generators on primary test stand. High Power Laser and Particle Beams, 2012, 24(3):685-688)

[70] 何安,任济,丰树平, 等. Z箍缩初级实验平台的激光触发系统[J]. 强激光与粒子束, 2012, 24(4):839-842. (He An, Ren Ji, Feng Shuping, et al. Design and experimental verify of laser trigger system for Z-pinch primary test stand. High Power Laser and Particle Beams, 2012, 24(4):839-842)

[71] 王勐,李逢,卫兵, 等. PTS装置绝缘堆工作性能的初步分析[J]. 强激光与粒子束, 2013,25(10):2767-2771.(Wang Meng, Li Feng, Wei Bing, et al. Primary performance of PTS vacuum insulator stack. High Power Laser and Particle Beams, 2013, 25 (10) : 2767-2771)

[72] Deng Jianjun, Xie Weiping, Feng Shuping, et al. Initial performance of the primary test stand[J].IEEE Trans on Plasma Science,2013, 41(10): 2580-2583.

[73] Deng Jianjun, Xie Weiping, Shi Jinshui, et al. Overview of pulsed power researches at CAEP[C]//The 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams. 2014.

[74] 王勐,周良骥,邹文康, 等. 混合模式直线型变压器驱动源模块[J]. 强激光与粒子束,2012,24(5): 1239-1243. (Wang Meng, Zhou Liangji, Zou Wenkang, et al. Mixed-mode LTD modul. High Power Laser and Particle Beams, 2012,24(5): 1239-1243)

[75] Baranchikov E I, Gordeev A V, Korolev V D, et al. Magnetic self-insulation of electron beams in vacuum lines[J]. Sov Phys-JETP, 1978, 48(6):1058-1068.

[76] Mesyats G A. Pulsed power. New York: Kluwer Academic/Plenum Publishers, 2005:146-146.

[77] Di Capua M S, Goerz D A, Freytag E K. Vacuum transmission lines for pulse sharpening and diagnostics applications[C]//Proc 6th IEEE International Pulsed Power Conference. 1987: 393-396.

[78] Galstjan E A, Kazanskiy LN, Khomenko A I. Study of electromagnetic chock wave in modified MITL[C]//Proc 11th IEEE International Pulsed Power Conference. 2001: 1657-1662.

[79] Martin T E. Pulsed power for fusion[C]//Proc 2nd IEEE International Pulsed Power Conference. 1979:2-8.

[80] VanDevender J P. Self magnetically insulated power flow [C]//Proc 2nd IEEE International Pulsed Power Conference.1979:55-60.

[81] Baranchikov E I, Gordeev A V, Korolev V D, et al. Magnetic self-insulation of vacuum transmission lines[C]//Proc 2nd International Topical Conference on High Power Electron and Ion Beam Research and Technology. 1977:3-21.

[82] Van Devender J P. Long self-magnetically insulated power transport experiments[J]. J Appl Phys, 1979, 50(6): 3928-3934.

[83] Parker R K, Anderson R E, Duncan C V. Plasma-induced field emission and the characteristics of high-current relativistic electron flow[J]. J Appl Phys, 1974,45(6):2463-2479.

[84] Stinnett R W, Palmer M A, Spielman R B, et al. Small gap experiments in magnetically insulated transmission lines[J]. IEEE Trans on Plasma Sci, 1983,11(3):216-219.

[85] Ivanov V V, Laca P J, Bauer B S, et al. Investigation of plasma evolution in a coaxial small-gap magnetically insulated transmission line[J]. IEEE Trans on Plasma Sci, 2004, 32(5):1843-1848.

[86] Stinnett R W, Allen G R, Davis H P, et al. Cathode plasma formation in magnetically-insulated transmission lines[J]. IEEE Trans on Electrical Insulation, 1985, 20(4): 807-809.

[87] Bakshaev Y L, Bartov A V, Blinov P I, et al. Study of the Dynamics of the electrode plasma in a high-current magnetically insulated transmission line[J]. Plasma Physics Reports, 2007, 33(4): 291-303.

[88] Van Devender J P, Langston W L, Pasik M F, et al. New self-magnetically insulated connection of multi-level accelerators to a common load [C]//Proc 18th IEEE International Pulsed Power Conference. 2011:1003-1008.

[89] Rose D V, Welch D R, Hughes T P. Plasma evolution and dynamics in high-power vacuum-transmission-line post-hole convolutes[J]. Phys Rev ST Accel Beams, 2008, 11: 060401.

[90] Jr Mendel C W, Pointon T D, Savage M E, et al. Losses at magnetic nulls in pulsed-power transmission line systems[J]. Phys Plasmas, 2006, 13: 043105.

[91] Schumer J W, Ottinger P F, Olson Craig L. Power flow in a magnetically insulated recyclable transmission line for a Z-pinch-driven inertial-confinement-fusion energy system[J]. IEEE Trans on Plasma Sci, 2006, 34(6): 2652-2668.

[92] Seidel D B, Jr Mendel C W, Savage M E. Low impedance Z-pinch drivers without post-hole convolute current adders[R]. SAND2009-6133, 2009.

邓建军, 王勐, 谢卫平, 周良骥, 邹文康, 郭帆, 章乐, 李逢, 丰树平, 陈林, 夏明鹤, 计策, 袁建强, 宋盛义, 黄显宾, 彭先觉. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26(10): 100201. Deng Jianjun, Wang Meng, Xie Weiping, Zhou Liangji, Zou Wenkang, Guo Fan, Zhang Le, Li Feng, Feng Shuping, Chen Lin, Xia Minghe, Ji Ce, Yuan Jianqiang, Song Shengyi, Huang Xianbin, Peng Xianjue. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100201.

本文已被 18 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!