光学技术, 2017, 43 (1): 50, 网络出版: 2017-02-23  

基于SoC软硬件协同设计的布匹瑕疵检测

Fabric defect detection of hardware-software co-design based on SoC
作者单位
1 江南大学 轻工过程先进控制教育部重点实验室,  江苏  无锡  214122
2 无锡信捷电气股份有限公司,  江苏 无锡  214072
摘要
针对布匹瑕疵检测存在的有效性不高、实时性不强等问题, 提出一种视觉显著性分析和最优椭圆Gabor滤波相结合的瑕疵检测方法。离线阶段采用差分进化算法对无瑕疵样本图像进行椭圆Gabor滤波器的参数寻优, 得到最优EGF; 在线阶段采用软硬件协同设计技术进行软硬件划分, 基于Zynq SoC的PL端实现中值滤波、RGB到CIE LAB格式颜色空间转换、LAB三通道EGF处理, 通过AXI VDMA总线将图像数据传输到PS端, 并计算滤波前后图像特征向量, 提取瑕疵显著区域, 确定阈值分离瑕疵。实验表明, 该方法有效地抑制了背景凸显瑕疵区域, 且软硬件结合提速明显, 具有较高的有效性和实时性。
Abstract
There are some shortages in present fabric defect detection algorithms, such as low accuracy, low real-time capability. A detection algorithm combined on visual salient analysis and optimized elliptical Gabor filter is presented. Differential revolution method are adopted by training the free-defect sample images to gain the optimized parameters of elliptical Gabor filter during the offline period and gain the optimized EGF. In the online period, the hardware and software of algorithm are partitioned by using hw/sw co-design technology, to realize median filter, color space conversion of RGB to the CIE LAB format, three-channel EGF processing in the LAB space based on PL of Zynq SoC. The image data are transferred to PS via AXI VDMA bus. The feature vectors of the pre-filter and filtered images are calculated. The defect salient region is extracted. The threshold is determined and the defect region is segmented. Experiments show, the background effectively and highlight the defect region accurately are suppressed. Combining software and hardware is accelerated clearly. The validity and real-time capability are better.
参考文献

[1] NGAN H Y T, PANG G K H, YUNG N H C. Automated fabric defect detection-A review[J]. Image & Vision Computing, 2011, 29(7): 442-458.

[2] LI G, SHI J, LUO H, et al. A computational model of vision attention for inspection of surface quality in production line[J]. Machine Vision & Applications, 2013, 24(4): 835-844.

[3] LIANG Z, XU B, CHI Z, et al. Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network[J]. Expert Systems with Applications, 2012, 39(4): 4201-4212.

[4] BAI X, FANG Y, LIN W, et al. Saliency-based defect detection in industrial images by using phase spectrum[J]. Industrial Informatics IEEE Transactions on, 2014, 10(4): 2135-2145.

[5] 管声启, 高照元, 吴宁,等. 基于视觉显著性的平纹织物疵点检测[J]. 纺织学报, 2014, 35(4): 56-61.

    GUAN Shengqi, GAO Zhaoyuan, WU Ning, et al. Defect detection of plain weave based on visual saliency mechanism[J]. Journal of Textile Research, 2014, 35(4): 56-61.

[6] 李春雷, 张兆翔, 刘洲峰,等. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报: 工学版, 2014(4): 1-8.

    LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng, et al. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Jouranl of Shandong University(Engineering Science),2014(4): 1-8.

[7] 张振尧, 白瑞林, 过志强,等. 磁瓦表面缺陷的机器视觉检测方法[J]. 光学技术, 2014,40(5): 434-439.

    ZHANG Zhenyao, BAI Ruilin, GUO Zhiqiang, et al. The feature selection and bias classification of magnetic tile surface defect[J]. Optical Technique, 2014,40(5): 434-439.

[8] YONG C P C, CHANDRAMOORTHY N, IRICK K M, et al. Accelerating multiresolution Gabor Feature extraction for real time vision applications[J]. Journal of Signal Processing Systems, 2014, 76(2): 149-168.

[9] TONG L E, WONG W K, KWONG C K. Differential evolution-based optimal Gabor filter model for fabric inspection[J]. Neurocomputing, 2016,173(3): 1386-1401.

[10] YUN J P, CHOI S H, KIM J W, et al. Automatic detection of cracks in raw steel block using Gabor filter optimized by univariate dynamic encoding algorithm for searches (uDEAS)[J]. Ndt & E International, 2009, 42(5): 389-397.

[11] JING J, LIU S, LI P, et al. The fabric defect detection based on CIE L*a*b* color space using 2-D Gabor filter[J]. Journal of the Textile Institute, 2015: 1-9.

[12] KRYJAK T, KOMORKIEWICZ M, GORGON M. Real-time background generation and foreground object segmentation for high-definition colour video stream in FPGA device[J]. Journal of Real-Time Image Processing, 2014, 9(1): 61-77.

[13] NOROUZNEZHAD E, BIGDELI A, POSTULA A, et al. Robust object tracking using local oriented energy features and its hardware/software implementation[C]∥International Confere- nce on Control Automation Robotics & Vision. Singapore: IEEE, 2010: 2060-2066.

黄张祥, 白瑞林, 吉峰. 基于SoC软硬件协同设计的布匹瑕疵检测[J]. 光学技术, 2017, 43(1): 50. HUANG Zhangxiang, BAI Ruilin, JI Feng. Fabric defect detection of hardware-software co-design based on SoC[J]. Optical Technique, 2017, 43(1): 50.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!