中国激光, 2018, 45 (8): 0804009, 网络出版: 2018-08-11   

激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用 下载: 771次

Fabrication of Fiber SERS Probes by Laser-Induced Self-Assembly Method in a Meniscus and Its Applications in Trace Detection of Pesticide Residues
作者单位
1 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
引用该论文

董子豪, 刘晔, 秦琰琰, 毛庆和. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用[J]. 中国激光, 2018, 45(8): 0804009.

Dong Zihao, Liu Ye, Qin Yanyan, Mao Qinghe. Fabrication of Fiber SERS Probes by Laser-Induced Self-Assembly Method in a Meniscus and Its Applications in Trace Detection of Pesticide Residues[J]. Chinese Journal of Lasers, 2018, 45(8): 0804009.

参考文献

[1] Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419.

    Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419.

[2] Nieto-García A J, Romero-González R, Garrido Frenich A. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry[J]. Food Control, 2015, 47: 369-380.

    Nieto-García A J, Romero-González R, Garrido Frenich A. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry[J]. Food Control, 2015, 47: 369-380.

[3] 李凌云, 许晓敏, 林桓, 等. 超高效液相色谱-串联质谱法快速检测蔬菜中248种农药残留[J]. 色谱, 2016, 34(9): 835-849.

    李凌云, 许晓敏, 林桓, 等. 超高效液相色谱-串联质谱法快速检测蔬菜中248种农药残留[J]. 色谱, 2016, 34(9): 835-849.

    Li L Y, Xu X M, Lin H, et al. Rapid detection of 248 pesticide residues in vegetables by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(9): 835-849.

    Li L Y, Xu X M, Lin H, et al. Rapid detection of 248 pesticide residues in vegetables by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(9): 835-849.

[4] Peng C F, Xu C L, Jin Z Y. Comparative analysis of medroxyprogesterone acetate residue in animal tissues by ELISA and GC-MS[J]. Analytical Letters, 2006, 39(9): 1865-1873.

    Peng C F, Xu C L, Jin Z Y. Comparative analysis of medroxyprogesterone acetate residue in animal tissues by ELISA and GC-MS[J]. Analytical Letters, 2006, 39(9): 1865-1873.

[5] Katsoudas E, Abdelmesseh H H. Enzyme inhibition and enzyme-linked immunosorbent assay methods for carbamate pesticide residue analysis in fresh produce[J]. Journal of Food Protection, 2000, 63(12): 1758-1760.

    Katsoudas E, Abdelmesseh H H. Enzyme inhibition and enzyme-linked immunosorbent assay methods for carbamate pesticide residue analysis in fresh produce[J]. Journal of Food Protection, 2000, 63(12): 1758-1760.

[6] Zheng J K, He L L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

    Zheng J K, He L L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

[7] Li J L, Sun D W, Pu H B, et al. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique[J]. Food Chemistry, 2017, 218: 543-552.

    Li J L, Sun D W, Pu H B, et al. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique[J]. Food Chemistry, 2017, 218: 543-552.

[8] Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta, 2017, 167: 236-241.

    Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta, 2017, 167: 236-241.

[9] Huang J, Ma D Y, Chen F, et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7436-7446.

    Huang J, Ma D Y, Chen F, et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7436-7446.

[10] Zhang C H, Zhu J, Li J J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398.

    Zhang C H, Zhu J, Li J J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398.

[11] Xu Q, Guo X Y, Xu L, et al. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues[J]. Sensors and Actuators B, 2017, 241: 1008-1013.

    Xu Q, Guo X Y, Xu L, et al. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues[J]. Sensors and Actuators B, 2017, 241: 1008-1013.

[12] Guerrini L, Aliaga A E, Carcamo J, et al. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering[J]. Analytica Chimica Acta, 2008, 624(2): 286-293.

    Guerrini L, Aliaga A E, Carcamo J, et al. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering[J]. Analytica Chimica Acta, 2008, 624(2): 286-293.

[13] Dai H C, Sun Y J, Ni P J, et al. Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. Sensors and Actuators B, 2017, 242: 260-268.

    Dai H C, Sun Y J, Ni P J, et al. Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. Sensors and Actuators B, 2017, 242: 260-268.

[14] Zhang L L, Jiang C L, Zhang Z P. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.

    Zhang L L, Jiang C L, Zhang Z P. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.

[15] Liu Z G, Wang Y, Deng R, et al. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14160-14168.

    Liu Z G, Wang Y, Deng R, et al. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14160-14168.

[16] Fang H, Zhang X, Zhang S J, et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy[J]. Sensors and Actuators B, 2015, 213: 452-456.

    Fang H, Zhang X, Zhang S J, et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy[J]. Sensors and Actuators B, 2015, 213: 452-456.

[17] Cao J, Zhao D, Mao Q H. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper[J]. The Analyst, 2017, 142(4): 596-602.

    Cao J, Zhao D, Mao Q H. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper[J]. The Analyst, 2017, 142(4): 596-602.

[18] Yin Z, Geng Y, Li X, et al. Sensitivity-enhanced U-shaped fiber SERS probe with photoreduced silver nanoparticles[J]. IEEE Photonics Journal, 2016, 8(3): 6803607.

    Yin Z, Geng Y, Li X, et al. Sensitivity-enhanced U-shaped fiber SERS probe with photoreduced silver nanoparticles[J]. IEEE Photonics Journal, 2016, 8(3): 6803607.

[19] 范群芳, 刘晔, 曹杰, 等. 利用激光诱导化学沉积法制备锥形光纤SERS探针[J]. 中国激光, 2014, 41(3): 0310001.

    范群芳, 刘晔, 曹杰, 等. 利用激光诱导化学沉积法制备锥形光纤SERS探针[J]. 中国激光, 2014, 41(3): 0310001.

    Fan Q F, Liu Y, Cao J, et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method[J]. Chinese Journal of Lasers, 2014, 41(3): 0310001.

    Fan Q F, Liu Y, Cao J, et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method[J]. Chinese Journal of Lasers, 2014, 41(3): 0310001.

[20] Fan Q F, Cao J, Liu Y, et al. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method[J]. Applied Optics, 2013, 52(25): 6163-6169.

    Fan Q F, Cao J, Liu Y, et al. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method[J]. Applied Optics, 2013, 52(25): 6163-6169.

[21] 雷星, 刘晔, 黄竹林, 等. 高灵敏度锥形光纤SERS探针及其在农残检测中的应用[J]. 光学学报, 2015, 35(8): 0806001.

    雷星, 刘晔, 黄竹林, 等. 高灵敏度锥形光纤SERS探针及其在农残检测中的应用[J]. 光学学报, 2015, 35(8): 0806001.

    Lei X, Liu Y, Huang Z L, et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 2015, 35(8): 0806001.

    Lei X, Liu Y, Huang Z L, et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 2015, 35(8): 0806001.

[22] Huang Z L, Lei X, Liu Y, et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17247-17254.

    Huang Z L, Lei X, Liu Y, et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17247-17254.

[23] Liu Y, Huang Z L, Zhou F, et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus[J]. Nanoscale, 2016, 8(20): 10607-10614.

    Liu Y, Huang Z L, Zhou F, et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus[J]. Nanoscale, 2016, 8(20): 10607-10614.

[24] Li D D, Zheng G C, Jia H W, et al. Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate[J]. Colloids and Surfaces A, 2014, 451: 48-55.

    Li D D, Zheng G C, Jia H W, et al. Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate[J]. Colloids and Surfaces A, 2014, 451: 48-55.

[25] Zheng H, Zou B, Chen L, et al. Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection[J]. CrystEngComm, 2015, 17(33): 6393-6398.

    Zheng H, Zou B, Chen L, et al. Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection[J]. CrystEngComm, 2015, 17(33): 6393-6398.

[26] 食品安全国家标准: 食品中农药最大残留限量: GB 2763—2016[S]. 国家食品药品监督管理总局, 2017.

    食品安全国家标准: 食品中农药最大残留限量: GB 2763—2016[S]. 国家食品药品监督管理总局, 2017.

    National food safety standard - maximum residue limits for pesticides in food: GB 2763—2016[S]. China Food and Drug Administration, 2017.

    National food safety standard - maximum residue limits for pesticides in food: GB 2763—2016[S]. China Food and Drug Administration, 2017.

[27] Lee D, Lee S, Seong G H, et al. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy[J]. Applied Spectroscopy, 2006, 60(4): 373-377.

    Lee D, Lee S, Seong G H, et al. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy[J]. Applied Spectroscopy, 2006, 60(4): 373-377.

董子豪, 刘晔, 秦琰琰, 毛庆和. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用[J]. 中国激光, 2018, 45(8): 0804009. Dong Zihao, Liu Ye, Qin Yanyan, Mao Qinghe. Fabrication of Fiber SERS Probes by Laser-Induced Self-Assembly Method in a Meniscus and Its Applications in Trace Detection of Pesticide Residues[J]. Chinese Journal of Lasers, 2018, 45(8): 0804009.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!