中国激光, 2018, 45 (8): 0804009, 网络出版: 2018-08-11   

激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用 下载: 773次

Fabrication of Fiber SERS Probes by Laser-Induced Self-Assembly Method in a Meniscus and Its Applications in Trace Detection of Pesticide Residues
作者单位
1 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
利用激光诱导液面自组装法制备金纳米棒光纤表面增强拉曼散射(SERS)探针,探讨制备过程中激光诱导功率和诱导时间对探针灵敏度的影响。将优化条件下(70 mW,7 min)制备的光纤SERS探针与便携式拉曼光谱仪联用,实现福美双、甲基对硫磷两种农药残留的高灵敏度检测,检测灵敏度分别达到10-7 mol/L和5×10-7 mol/L。探针具有良好的SERS检测重复性,相对标准差小于6%。该激光诱导液面自组装法具有操作简单、成本低廉、探针制备时间短等优点,能够实现高灵敏度光纤SERS探针的重复、批量制备; 优化制备的光纤SERS探针在多种农药残留检测应用中展现出良好的应用前景。
Abstract
Au-nanorod modified fiber surface enhanced Raman scattering (SERS) probes were fabricated by laser-induced self-assembly method in a meniscus. The influences of laser radiation power and laser radiation time on the performances of fiber probes were studied in detail. Under an optimized experimental condition as 70 mW laser power and 7 min radiation time, the fiber SERS probes with high sensitivity and good repeatability have been prepared. Further, these optimized fiber SERS probes were used to detect two typical pesticide residues of thiram and methyl parathion (MP) by combining with a portable Raman spectrometer. High detection sensitivity as 10-7 mol/L for thiram and 5×10-7 mol/L for MP, and good detection repeatability with the relative standard deviation less than 6% were observed. This laser-induced self-assembly method in a meniscus has the advantages of easy operation, low cost and short preparation time, which is very useful for the fast preparation of fiber SERS probes with high sensitivity. These optimized fiber SERS probes may have potential applications in rapid and high sensitivity detection of various pesticide residues.

1 引言

农药在保障农作物产量方面发挥着重要作用,广泛应用于蔬菜、水果等的各个种植生长阶段。然而,农药的不合理使用会导致农产品中农药残留超标,长期食用可造成人体肝脏、肾脏等器官的不可逆损伤甚至诱发癌变,严重威胁着人类身体健康[1]。因此,对农残高灵敏度快速识别与检测至关重要。目前,农残检测方法主要有气体层析质谱法、高效液相色谱法、免疫分析法、酶抑制法等[2-5]。其中,质谱法、色谱法检测灵敏度高,但存在样品预处理复杂、检测时间长等缺点;免疫分析法、酶抑制法可实现快速检测,但灵敏度较低,识别性相对较差。

近年来,表面增强拉曼散射(SERS)光谱因具有样品预处理简单、检测灵敏度高、检测时间短、分子指纹特性突出等显著优点[6-8],在农残检测中具有重要应用前景,受到人们的普遍关注。例如,在SERS基底制备方面,设计并制备出栗子形、三角形、爆米花形等[9-11]不同形貌的纳米颗粒,提高了农残检测灵敏度;在检测方式方面,发展了诸如溶胶混合、浸泡吸附和滴定干燥等方法[12-14],实现了对硫丹、福美双和甲基对硫磷等农残的SERS检测,并已开始尝试果蔬的SERS检测实际应用[15-16]。然而,迄今为止农残SERS检测大多是基于基片型SERS基底(即在硅或二氧化硅基片上制备贵金属纳米结构),由大型显微拉曼光谱仪实现,而基片型SERS基底在制备时难以实现贵金属纳米颗粒在宏观尺度上的均匀分布,进而影响检测重复性;同时,大型拉曼光谱仪价格昂贵,也不利于现场农残检测应用。

高灵敏度光纤SERS探针[17-18]为实现农残高灵敏度、高重复性、快速检测提供了一种新思路。光纤SERS探针通过提高SERS相互作用面积来提高检测灵敏度,且收集到的拉曼信号为相互作用面积上的整体积分,降低了对纳米颗粒分布均匀性要求,从而可有效提高检测重复性。不仅如此,光纤SERS探针还易于与便携式拉曼光谱仪联用,构建出便携式农残SERS光谱快检仪以满足现场检测需求。但是,基于光纤SERS探针的农残检测研究报道极少。本实验室在光纤SERS探针方面已开展了系列研究工作,发展了激光诱导化学沉积法[19-21]、静电自组装法[22]、激光诱导液面自组装法[23]等多种方法制备光纤SERS探针。本文将在前期激光诱导液面自组装的一步检测法[23]基础上,针对现场检测应用场景,进一步发展出两步检测法,并成功用于农残的快速检测。一步检测法是指通过将贵金属纳米颗粒溶胶与待测物溶液均匀混合,并将光纤置于其与混合溶胶形成的弯液面处,在合适的诱导激光下同时实现光纤SERS探针的制备和SERS光谱的检测,即“边制备边检测”。一步检测法中为了实现高的检测灵敏度,对实验条件提出了较为苛刻的要求[23],如光纤在弯液面的位置需精确到0.1 mm以内,溶胶初始温度为(25±1) ℃,环境湿度为30%~60%等。这在实验室条件下容易满足,但是在外场的实际检测环境中却难以保证,限制其实际现场检测应用。因此,本文提出两步检测法的“先制备后检测”策略,即先利用激光诱导液面自组装法在纳米颗粒溶胶中批量制备光纤SERS探针,然后将其用于待测溶液的SERS光谱检测。实验结果表明,在实验室条件下,利用激光诱导液面自组装法能够实现高灵敏度金纳米棒光纤SERS探针的可控、重复制备,结合自主研制的便携式拉曼光谱仪,其对福美双、甲基对硫磷等农残的SERS检测灵敏度分别达到10-7 mol/L和5×10-7 mol/L,检测重复性相对标准差(RSD)小于6%。这种基于激光诱导液面自组装的两步检测法在农残的现场快检中具有潜在应用前景。

2 激光诱导液面自组装法制备光纤SERS探针

激光诱导液面自组装法中[23],在诱导激光辐照下,光纤与纳米颗粒溶胶界面处形成弯液面,该弯液面内的贵金属纳米颗粒吸收光能量转换为热量,引起弯液面附近温度局部升高;该局域热效应与液体表面张力共同作用下,弯液面处纳米颗粒的浓度显著增加且较高的局域温度会加剧纳米颗粒的布朗运动,实现纳米颗粒在光纤端面的沉积。前期工作中,我们将银纳米立方体/乙醇溶胶与待测物(p-ATP)溶液均匀混合,并将光纤一端置于混合溶胶弯液面附近,另一端与便携式拉曼光谱仪连接,利用拉曼激发光同时实现探针的制备和SERS光谱的动态采集,即所谓的一步检测法。本文将这种激光诱导液面自组装法推广到两步检测法,即先在贵金属纳米颗粒溶胶中利用激光诱导液面自组装法制备光纤SERS探针,然后将制备完成的探针用于待测溶液的SERS光谱检测,以满足现场应用要求。

激光诱导液面自组装法制备光纤SERS探针的实验装置如图1所示,多模石英光纤(苏州光库,200/220 μm,数值孔径NA=0.22)一端与785 nm激光器输出尾纤熔接,另一端浸入贵金属纳米颗粒溶胶中,利用一维精密平移台精确控制光纤端面在溶胶液面的位置以实现光纤探针的制备。考虑到金纳米颗粒通常具有更好的长期稳定性和近红外波段的表面等离子体共振特性,选用金纳米棒(香港NanoSeeds公司,NR-20-780-100,OD值为5)溶胶进行探针制备。对于金纳米棒/水溶胶体系,光纤从

图 1. 激光诱导液面自组装法制备光纤SERS探针示意图

Fig. 1. Experimental setup for preparing fiber SERS probes with laser-induced self-assembly method in a meniscus

下载图片 查看所有图片

图 2. (a)平端面光纤探针的SERS光谱检测实验装置; (b)激光诱导功率为70 mW时不同时间下制备的光纤SERS探针测试结果;(c)最强峰1376 cm-1处SERS信号强度与激光诱导时间的关系;(d)~(f)激光诱导时间为3,7,9 min时端面处的SEM图像

Fig. 2. (a) Homemade instrument for SERS detection using fiber SERS probes; (b) measured SERS spectra of fiber SERS probes fabricated with different laser radiation times when laser irradiation has a power of 70 mW; (c) relationship between SERS intensity and laser radiation time at Raman peak of 1376 cm-1; (d)-(f) SEM images of fiber probes with different laser radiation times at 3, 7, and 9 min, respectively

下载图片 查看所有图片

溶胶中匀速向上提拉形成的弯液面最大高度为0.27~0.3 mm,由于该弯液面高度对探针制备有影响[23],经反复实验,优化后的弯液面高度为(0.2±0.03) mm。

激光诱导功率和诱导时间是激光诱导液面自组装方法制备光纤SERS探针的关键。首先,将诱导激光功率固定为70 mW,根据激光诱导时间的不同(3~9 min),制备5根不同的光纤SERS探针。需要指出的是,利用光纤SERS探针对待测物进行SERS光谱检测时,由于纳米材料表面分子脱附困难,探针通常只能单次使用。将5根不同的光纤SERS探针分别插入10-5 mol/L福美双溶液中,利用实验室自行研制的光纤探针增强型便携式拉曼光谱仪[图2(a)]对其SERS性能进行评估,结果如图2(b)所示。光谱检测时,拉曼激发光波长为785 nm,光谱积分时间为2 s,所有SERS光谱均去除光纤自身的拉曼本底。由图可见,福美双在937,1143,1376,1500 cm-1处峰位明显,其中937 cm-1峰位对应CH3N和C=S模式的拉伸振动,1143 cm-1和1500 cm-1峰位均对应CN拉伸振动和摆动CH3模式,1376 cm-1对应CN拉伸模式和对称的CH3形变模式[24-25]图2(c)提取不同激光诱导时间下1376 cm-1峰位处的SERS强度,可见随着激光诱导时间的增加,SERS强度呈现先增大后减小的趋势,即存在最优激光诱导时间使得探针灵敏度最高。图2(d)~(f)所示为三个典型诱导时间下光纤SERS探针表面的扫描电子显微镜(SEM)图像。从图中可见,当时间从3 min增加到7 min时,光纤表面吸附的纳米颗粒数量逐渐增多,SERS强度逐渐增加,7 min时纳米颗粒基本在光纤端面呈单层链状分布;继续增加诱导时间至9 min,更多纳米颗粒吸附在光纤端面导致颗粒层厚度增加,降低了拉曼激发和收集效率,且出现颗粒团聚现象,导致SERS信号变弱。

其次,改变诱导激光功率至60 mW和85 mW,分析激光诱导功率对探针制备的影响。考虑到不同诱导功率下最优诱导时间可能不同,在每个功率下,改变诱导时间进行探针制备。图3(a)和图3(b)分别为两种激光功率下不同诱导时间制备的探针对10-5 mol/L福美双SERS光谱的检测结果。同样地,在各自功率下,随着诱导时间的增加,SERS信号强度出现先增后减的趋势。通过比较三种功率下最强拉曼峰处的SERS强度随时间变化曲线[图3(c)],可得最优激光诱导时间随着诱导激光功率的增加而缩短:激光功率60,70,85 mW对应的最优诱导时间分别为15,7,4.5 min。这是因为诱导激光功率越高,光纤弯液面处局域热效应越明显,单位时间内溶剂蒸发与补充越快,这种强烈的对流利于弯液面处纳米颗粒浓度的快速升高并可增大纳米颗粒与光纤端面的碰撞概率,从而使纳米颗粒更快地沉积在光纤端面,即所需激光诱导时间更短[23]。然而,高诱导激光功率下,SERS强度与诱导时间之间具有强依赖性,即较短的时间改变会引起较大的SERS强度变化。如85 mW下诱导时间从4 min变为4.5 min时,其SERS强度从12000增加至20000;而60 mW下诱导时间从12 min变为15 min时,SERS强度仅从16000增加至20000。因此,综合考虑实验可操作性和重复性(诱导时间精度在半分钟之内)以及探针的批量制备需求(希望最优诱导时间尽可能短),得到优化的探针制备条件为激光诱导功率70 mW和诱导时间7 min。

图 3. (a) 60 mW和(b) 85 mW下不同激光诱导时间制备的探针测试结果;(c) 60,70,85 mW下1376 cm-1处SERS信号强度与激光诱导时间的关系

Fig. 3. SERS results for the fiber probes at different laser powers of (a) 60 mW and (b) 85 mW; (c) relationship between SERS intensity and laser radiation time under different laser powers of 60, 70, and 85 mW for the Raman peak of 1376 cm-1

下载图片 查看所有图片

3 光纤SERS探针在农残检测中的应用

在上述优化实验条件(70 mW,7 min)下,重复制备16根光纤SERS探针,以备后续使用。以10-5 mol/L福美双溶液为例对光纤SERS探针测试重复性进行评估。图4(a)所示为随意选取的7根光纤SERS探针的SERS检测结果,可见光谱重复性很好,其最强拉曼峰1376 cm-1处的相对标准差约为5.8%[图4(a)插图]。其次,从预先制备好的光纤SERS探针中任意选取5根,对不同浓度的福美双溶液进行拉曼光谱检测,结果如图4(b)所示。随着浓度的减小,SERS信号强度逐渐降低;当浓度降低至10-7 mol/L时,1376 cm-1处福美双特征峰仍可明显分辨。即光纤SERS探针对福美双的检测灵敏度达到10-7 mol/L,优于国家最低标准4×10-7 mol/L [26]。可达到高检测灵敏度的原因一方面是因为金纳米颗粒溶胶局域表面等离子体共振峰位于780 nm附近,非常接近拉曼激发光波长785 nm,有利于提供较大的SERS增强因子;另一方面,通过激光诱导时间的控制,纳米颗粒在光纤端面近似单层分布[图2(e)],因而溶液中农残分子易于实现Au=S键与金纳米棒的有效结合。

图 4. 优化条件下制备的光纤SERS探针对10-5 mol/L福美双的(a)检测重复性和(b)检测灵敏度

Fig. 4. SERS results of 10-5 mol/L thiram by the optimized fiber SERS probes. (a) Repeatability; (b) sensitivity

下载图片 查看所有图片

以甲基对硫磷为例,将该光纤SERS探针成功应用于有机磷农药残留的检测。将上述剩余的4根预先制备好的光纤SERS探针分别插入不同浓度的甲基对硫磷溶液中,利用自行研制的便携式拉曼光谱仪[图2(a)]进行拉曼光谱检测。图5所示为不同浓度下甲基对硫磷的SERS光谱曲线,其在859,1108,1346,1587 cm-1处的拉曼峰分别对应分子内部N=O键伸缩、苯环内C—H键振动、C—N键伸缩和苯环伸缩[27]。由此可见,将光纤SERS探针配合便携式拉曼光谱仪即可实现甲基对硫磷的高灵敏度检测,其检测灵敏度可达5×10-7 mol/L,与目前采用基片SERS基底与大型拉曼光谱仪的检测结果相当[27]。综上可得这种高灵敏度、重复性好的光纤SERS探针在农残现场、快速检测中展现出重要应用前景。

图 5. 不同浓度下甲基对硫磷的检测灵敏度

Fig. 5. SERS detection sensitivity of methyl parathion by optimized fiber SERS probes

下载图片 查看所有图片

4 结论

发展了基于激光诱导液面自组装的两步检测法,在金纳米棒溶胶中实现了高灵敏度光纤SERS探针的重复制备,进而实现氨基甲酸酯类农药残留福美双和有机磷类农药残留甲基对硫磷等的痕量、快速检测。实验中将光纤端面置于弯液面合适位置[距溶胶液面(0.2±0.03) mm],并研究激光诱导功率和诱导时间对探针制备的影响,得到优化的激光功率和诱导时间分别为70 mW 和7 min。优化条件下制备的光纤SERS探针与实验室自行研制的光纤探针增强型便携式拉曼光谱仪相结合,实现了两种典型农残的高灵敏度、高重复性检测:对福美双和甲基对硫磷的检测灵敏度分别达到10-7 mol/L和5×10-7 mol/L,检测重复性RSD小于6%。该激光诱导液面自组装两步检测法中,一方面通过在实验室环境中严格控制探针制备条件,能够实现高灵敏度光纤SERS探针的重复、批量制备,利于促进光纤SERS探针的实用化进程;另一方面,预先制备好的光纤SERS探针可以满足不同现场环境下的SERS检测需求,且其与便携式拉曼光谱仪相结合,为构建小型化农残快检仪提供一种新思路,具有潜在的应用前景。

参考文献

[1] Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419.

    Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419.

[2] Nieto-García A J, Romero-González R, Garrido Frenich A. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry[J]. Food Control, 2015, 47: 369-380.

    Nieto-García A J, Romero-González R, Garrido Frenich A. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry[J]. Food Control, 2015, 47: 369-380.

[3] 李凌云, 许晓敏, 林桓, 等. 超高效液相色谱-串联质谱法快速检测蔬菜中248种农药残留[J]. 色谱, 2016, 34(9): 835-849.

    李凌云, 许晓敏, 林桓, 等. 超高效液相色谱-串联质谱法快速检测蔬菜中248种农药残留[J]. 色谱, 2016, 34(9): 835-849.

    Li L Y, Xu X M, Lin H, et al. Rapid detection of 248 pesticide residues in vegetables by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(9): 835-849.

    Li L Y, Xu X M, Lin H, et al. Rapid detection of 248 pesticide residues in vegetables by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(9): 835-849.

[4] Peng C F, Xu C L, Jin Z Y. Comparative analysis of medroxyprogesterone acetate residue in animal tissues by ELISA and GC-MS[J]. Analytical Letters, 2006, 39(9): 1865-1873.

    Peng C F, Xu C L, Jin Z Y. Comparative analysis of medroxyprogesterone acetate residue in animal tissues by ELISA and GC-MS[J]. Analytical Letters, 2006, 39(9): 1865-1873.

[5] Katsoudas E, Abdelmesseh H H. Enzyme inhibition and enzyme-linked immunosorbent assay methods for carbamate pesticide residue analysis in fresh produce[J]. Journal of Food Protection, 2000, 63(12): 1758-1760.

    Katsoudas E, Abdelmesseh H H. Enzyme inhibition and enzyme-linked immunosorbent assay methods for carbamate pesticide residue analysis in fresh produce[J]. Journal of Food Protection, 2000, 63(12): 1758-1760.

[6] Zheng J K, He L L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

    Zheng J K, He L L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

[7] Li J L, Sun D W, Pu H B, et al. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique[J]. Food Chemistry, 2017, 218: 543-552.

    Li J L, Sun D W, Pu H B, et al. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique[J]. Food Chemistry, 2017, 218: 543-552.

[8] Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta, 2017, 167: 236-241.

    Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta, 2017, 167: 236-241.

[9] Huang J, Ma D Y, Chen F, et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7436-7446.

    Huang J, Ma D Y, Chen F, et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7436-7446.

[10] Zhang C H, Zhu J, Li J J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398.

    Zhang C H, Zhu J, Li J J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398.

[11] Xu Q, Guo X Y, Xu L, et al. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues[J]. Sensors and Actuators B, 2017, 241: 1008-1013.

    Xu Q, Guo X Y, Xu L, et al. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues[J]. Sensors and Actuators B, 2017, 241: 1008-1013.

[12] Guerrini L, Aliaga A E, Carcamo J, et al. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering[J]. Analytica Chimica Acta, 2008, 624(2): 286-293.

    Guerrini L, Aliaga A E, Carcamo J, et al. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering[J]. Analytica Chimica Acta, 2008, 624(2): 286-293.

[13] Dai H C, Sun Y J, Ni P J, et al. Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. Sensors and Actuators B, 2017, 242: 260-268.

    Dai H C, Sun Y J, Ni P J, et al. Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. Sensors and Actuators B, 2017, 242: 260-268.

[14] Zhang L L, Jiang C L, Zhang Z P. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.

    Zhang L L, Jiang C L, Zhang Z P. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.

[15] Liu Z G, Wang Y, Deng R, et al. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14160-14168.

    Liu Z G, Wang Y, Deng R, et al. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14160-14168.

[16] Fang H, Zhang X, Zhang S J, et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy[J]. Sensors and Actuators B, 2015, 213: 452-456.

    Fang H, Zhang X, Zhang S J, et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy[J]. Sensors and Actuators B, 2015, 213: 452-456.

[17] Cao J, Zhao D, Mao Q H. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper[J]. The Analyst, 2017, 142(4): 596-602.

    Cao J, Zhao D, Mao Q H. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper[J]. The Analyst, 2017, 142(4): 596-602.

[18] Yin Z, Geng Y, Li X, et al. Sensitivity-enhanced U-shaped fiber SERS probe with photoreduced silver nanoparticles[J]. IEEE Photonics Journal, 2016, 8(3): 6803607.

    Yin Z, Geng Y, Li X, et al. Sensitivity-enhanced U-shaped fiber SERS probe with photoreduced silver nanoparticles[J]. IEEE Photonics Journal, 2016, 8(3): 6803607.

[19] 范群芳, 刘晔, 曹杰, 等. 利用激光诱导化学沉积法制备锥形光纤SERS探针[J]. 中国激光, 2014, 41(3): 0310001.

    范群芳, 刘晔, 曹杰, 等. 利用激光诱导化学沉积法制备锥形光纤SERS探针[J]. 中国激光, 2014, 41(3): 0310001.

    Fan Q F, Liu Y, Cao J, et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method[J]. Chinese Journal of Lasers, 2014, 41(3): 0310001.

    Fan Q F, Liu Y, Cao J, et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method[J]. Chinese Journal of Lasers, 2014, 41(3): 0310001.

[20] Fan Q F, Cao J, Liu Y, et al. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method[J]. Applied Optics, 2013, 52(25): 6163-6169.

    Fan Q F, Cao J, Liu Y, et al. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method[J]. Applied Optics, 2013, 52(25): 6163-6169.

[21] 雷星, 刘晔, 黄竹林, 等. 高灵敏度锥形光纤SERS探针及其在农残检测中的应用[J]. 光学学报, 2015, 35(8): 0806001.

    雷星, 刘晔, 黄竹林, 等. 高灵敏度锥形光纤SERS探针及其在农残检测中的应用[J]. 光学学报, 2015, 35(8): 0806001.

    Lei X, Liu Y, Huang Z L, et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 2015, 35(8): 0806001.

    Lei X, Liu Y, Huang Z L, et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 2015, 35(8): 0806001.

[22] Huang Z L, Lei X, Liu Y, et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17247-17254.

    Huang Z L, Lei X, Liu Y, et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17247-17254.

[23] Liu Y, Huang Z L, Zhou F, et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus[J]. Nanoscale, 2016, 8(20): 10607-10614.

    Liu Y, Huang Z L, Zhou F, et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus[J]. Nanoscale, 2016, 8(20): 10607-10614.

[24] Li D D, Zheng G C, Jia H W, et al. Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate[J]. Colloids and Surfaces A, 2014, 451: 48-55.

    Li D D, Zheng G C, Jia H W, et al. Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate[J]. Colloids and Surfaces A, 2014, 451: 48-55.

[25] Zheng H, Zou B, Chen L, et al. Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection[J]. CrystEngComm, 2015, 17(33): 6393-6398.

    Zheng H, Zou B, Chen L, et al. Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection[J]. CrystEngComm, 2015, 17(33): 6393-6398.

[26] 食品安全国家标准: 食品中农药最大残留限量: GB 2763—2016[S]. 国家食品药品监督管理总局, 2017.

    食品安全国家标准: 食品中农药最大残留限量: GB 2763—2016[S]. 国家食品药品监督管理总局, 2017.

    National food safety standard - maximum residue limits for pesticides in food: GB 2763—2016[S]. China Food and Drug Administration, 2017.

    National food safety standard - maximum residue limits for pesticides in food: GB 2763—2016[S]. China Food and Drug Administration, 2017.

[27] Lee D, Lee S, Seong G H, et al. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy[J]. Applied Spectroscopy, 2006, 60(4): 373-377.

    Lee D, Lee S, Seong G H, et al. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy[J]. Applied Spectroscopy, 2006, 60(4): 373-377.

董子豪, 刘晔, 秦琰琰, 毛庆和. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用[J]. 中国激光, 2018, 45(8): 0804009. Dong Zihao, Liu Ye, Qin Yanyan, Mao Qinghe. Fabrication of Fiber SERS Probes by Laser-Induced Self-Assembly Method in a Meniscus and Its Applications in Trace Detection of Pesticide Residues[J]. Chinese Journal of Lasers, 2018, 45(8): 0804009.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!