光学与光电技术, 2019, 17 (4): 45, 网络出版: 2019-09-27  

压缩感知理论在太赫兹成像中的应用研究

Research of Compressive Sensing in Terahertz Imaging
邵哲明 1,*岳松 1,2左志高 1,2王友 1,2
作者单位
1 华中光电技术研究所-武汉光电国家研究中心, 湖北 武汉 430223
2 湖北久之洋红外系统股份有限公司, 湖北 武汉 430223
摘要
为了解决太赫兹成像系统中存在的成像速度慢、硬件复杂等问题, 利用压缩感知算法实现太赫兹成像系统性能的提升。通过对比离散小波基和离散傅里叶基对重构图像的影响, 发现离散小波基作为稀疏基时, 得到图像信噪比最优。然后验证了压缩采样匹配追踪、迭代加权二范数、贪婪基追踪等重构算法在太赫兹成像领域的应用可行性, 发现当测量比例大于40%时, 才能实现图像的重构。根据峰值信噪比、均方误差、算法运行时间等参数的对比结果, 发现迭代加权二范数算法相对空间匹配追踪算法, 峰值信噪比提升度达到20%, 均方误差下降度均大于50%。同时发现, 空间匹配追踪算法和子空间追踪算法的运行时间最少, 其中空间匹配追踪算法均小于0.5 s。为压缩感知理论在太赫兹成像领域的应用提供了新思路。
Abstract
In order to solve the problems of terahertz imaging system, such as slow speed and complicated hardware, the feasibility of compressive sensing theory to improve system performance of terahertz imaging is verified. By contrasting the imaging evaluation functions, it is found that the PSNR of the image is optimal, when the discrete wavelet basis is regarded as sparse basis. Then, the reconstruction algorithms, such as CoSaMP, IRLS, and GBP, are verified feasibility under algorithmically in terahertz imaging, and image reconstruction is realized when the measurement scale is 40%. According to the comparison of the peak signal to noise ratio, mean-square error, running time, it is found that the PSNR of IRLS is up to 20 percent, and the MSE of IRLS drop is more than 50 percent, comparing to the OMP. At the same time, running time of OMP is the least, which is smaller than 0.5 seconds.
参考文献

[1] 张希成. 太赫兹科学与技术展望[J]. 物理, 2013, 42(10): 691-694.

    ZHANG Xi-cheng. Terahertz science and technology prospects [J]. Physics, 2013, 42 (10): 691-694.

[2] 何明霞, 陈涛, 杨吉龙, 等. 太赫兹成像技术在肿瘤诊断方面的应用[J]. 肿瘤, 2012, 32(12): 1039-1042.

    HE Ming-xia, CHEN Tao, YANG Ji-long, et al. Application of terahertz imaging technology in cancer diagnosis [J]. Tumors, 2012, 32 (12): 1039-1042.

[3] 袁英豪 , 周正. Mini-T 系列便携式实时太赫兹光谱仪的设计与应用[J]. 太赫兹科学与电子信息学报, 2017, 15(6): 909-915.

    YUAN Ying-hao, ZHOU Zheng. Design and application of Mini-T series portable real-time terahertz spectrometer [J]. Journal of Terahertz Science and Electronic Information, 2017, 15 (6): 909-915.

[4] 陈韬, 孟坤, 朱礼国, 等. 基于太赫兹光谱成像技术的智能处理方法分析[J]. 太赫兹科学与电子信息学报, 2016, 14(1): 7-12.

    CHEN Tao, MENG Kun, ZHU Li-guo, et al. Analysis of intelligent processing method based on THz spectral imaging technology [J]. Journal of THz Science and Electronic Information, 2016, 14 (1): 7-12.

[5] 马吕, 杨玉平. 运用太赫兹光谱技术检测天麻中的水分含量[J]. 太赫兹科学与电子信息学报, 2017, 15(1): 26-28.

    MA Lü, YANG Yu-ping. Detection of moisture content in Gastrodia elata by terahertz spectroscopy [J]. Journal of Terahertz Science and Electronic Information, 2017, 15 (1): 26-28.

[6] 李昕磊, 李飚. 实时太赫兹探测与成像技术新进展[J]. 激光与光电子学进展, 2012, 49 (9): 51-56.

    LI Xin-lei, LI Biao. New advances in real-time terahertz detection and imaging technology [J]. Advances in Laser and Optoelectronics, 2012, 49 (9): 51-56.

[7] 乔灵博, 王迎新, 赵自然, 等. 主动式近距离太赫兹人体安检技术分析[J]. 微波学报, 2015, 31(4): 93-96.

    QIAO Ling-bo, WANG Ying-xin, ZHAO Zi-ran, et al. Active close terahertz human security technical analysis [J]. Journal of Microwave Science, 2015, 31 (4): 93-96.

[8] 王瑞君, 王宏强, 庄钊文, 等. 太赫兹雷达技术研究进展[J]. 激光与光电子学进展, 2013, 50 (4): 40001.

    WANG Rui-jun, WANG Hong-qiang, ZHUANG Zhao-wen, et al. Progress in terahertz radar technology [J]. Progress in Laser and Optoelectronics, 2013, 50 (4): 40001.

[9] 赵亚芹, 张亮亮, 祝德充, 等. 基于压缩传感的单点太赫兹成像[C]. 中国光学学会 2011 年学术大会摘要集, 2011.

    ZHAO Ya-qin, ZHANG Liang-liang, ZHE De-chong, et al. Single-point terahertz imaging based on compressed sensing [C]. Summary of the 2011 Academic Conference of the Chinese Optical Society, 2011.

[10] 李泽, 王民钢, 刘小华, 等. 基于压缩传感的太赫兹成像[J]. 红外与激光工程, 2013, 42(6): 1523-1527.

    LI Ze, WANG Min-gang, LIU Xiao-hua, et al. Terahertz imaging based on compression sensing [J]. Infrared and Laser Engineering, 2013, 42 (6): 1523-1527.

[11] Chan WL, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing [J]. Applied Physics Letters, 2008, 93(12): 121105-121105-3.

[12] Watts CM, Montoya J, Krishna S, et al. Coded and compressive THz imaging with metamaterials [C]. Proceedings of Society of Photo-Optical Instrumentation Engineers(SPIE): Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, 2014.

[13] Fang H, Yang H. A new compressed sensing-based matching pursuit algorithm for image reconstruction [C].International Congress on Image & Signal Processing, 2012: 338-342.

邵哲明, 岳松, 左志高, 王友. 压缩感知理论在太赫兹成像中的应用研究[J]. 光学与光电技术, 2019, 17(4): 45. SHAO Zhe-ming, YUE Song, ZUO Zhi-gao, WANG You. Research of Compressive Sensing in Terahertz Imaging[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2019, 17(4): 45.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!