激光与光电子学进展, 2017, 54 (4): 040002, 网络出版: 2017-04-19   

石墨烯光纤及其应用 下载: 3939次

Graphene-Based Optical Fiber and Its Applications
作者单位
燕山大学信息科学与工程学院河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
摘要
石墨烯因其独特的能带结构和卓越的电光特性,成为近年来的研究热点。石墨烯与光纤结合构成的石墨烯光纤是研究重点之一。论述了石墨烯结构及其基本特性。石墨烯是一种由单层碳原子以sp2杂化轨道紧密堆积成的二维蜂窝状晶格结构材料,具有独特的零带隙能带结构,在机械、电学、光学和热力学等方面具有优异的特性。介绍了国内外石墨烯光纤器件的研究进展,及基于石墨烯光纤的激光器、调制器、表面等离子体共振传感器和偏振器的工作原理及器件特性,分析了石墨烯光纤存在的问题及发展趋势。
Abstract
Graphene attracts much attention in recent years due to its unique energy band structure and excellent electro-optical properties. One of the important researches is the graphene optical fiber which is consist of graphene and optical fiber. The structure and basic properties of graphene are introduced. Graphene, which is with a two-dimensional honeycomb lattice structure composed of single-layer carbon atoms which are formed by the close stacking of sp2 hybird orbital, shows excellent properties in machinery, electrology, optics and thermodynamics because of its unique energy band structure with zero band gap. The research progress of graphene-based optical fiber devices at home and abroad is briefly reviewed. The working principle and device characteristics of lasers, modulators, surface plasmon resonance sensors and polarizers based on graphene optical fiber are described. The current problems and future development trends of graphene optical fiber are analyzed.
参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] 李绍娟, 甘 胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型碳材料, 2014, 29(5): 329-356.

    Li Shaojuan, Gan Sheng, Mu Haoran, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5): 329-356.

[3] 胡同欢, 蒋国保, 陈 宇, 等. 机械剥离石墨烯被动谐波锁模掺铒光纤激光器[J]. 中国激光, 2015, 42(8): 0802013.

    Hu Tonghuan, Jiang Guobao, Chen Yu, et al. Passive harmonic mode-locking in Er-doped fiber laser based on mechanical exfoliated graphene saturable absorber[J]. Chinese J Lasers, 2015, 42(8): 0802013.

[4] 任 军, 吴思达, 程昭晨, 等. 基于氧化石墨烯与半导体可饱和吸收镜的锁模飞秒掺铒光纤激光器[J]. 中国激光, 2015, 42(6): 0602013.

    Ren Jun, Wu Sida, Cheng Zhaochen, et al. Mode-locked femtosecond erbium-doped fiber laser based on graphene oxide versus semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2015, 42(6): 0602013.

[5] Zhou F, Hao R, Jin X F, et al. A graphene-enhanced fiber-optic phase modulator with large linear dynamic range[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1867-1870.

[6] Kim J A, Hwang T, Dugasani S R, et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 2013, 184(4): 426-433.

[7] Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

[8] 毕卫红, 王圆圆, 付广伟, 等. 基于石墨烯涂覆空心光纤电光调制特性的研究[J]. 物理学报, 2016, 65(4): 047801.

    Bi Weihong, Wang Yuanyuan, Fu Guangwei, et al. Study on the electro-optic modulation properties of graphene-coated hollow optical fiber[J]. Acta Physica Sinica, 2016, 65(4): 047801.

[9] 毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性分析[J]. 光学学报, 2016, 36(10): 1026013.

    Bi Weihong, Li Caili, Wang Xiaoyu, et al. Study on birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

[10] Avouris P. Graphene: Electronic and photonic properties and devices[J]. Nano Letters, 2010, 10(11): 4285-4294.

[11] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.

[12] Kuzmenko A B, Van H E, Carbone F, et al. Universal optical conductance of graphite[J]. Physical Review Letters, 2008, 100(11): 117401.

[13] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1313.

[14] Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[15] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

[16] Bao Q L, Zhang H, Wang B, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[17] 张 成, 罗正钱, 王金章, 等. 熔锥光纤倏逝场作用石墨烯双波长锁模掺镱光纤激光器[J]. 中国激光, 2012, 39(6): 0602006.

    Zhang Cheng, Luo Zhengqian, Wang Jinzhang, et al. Dual-wavelength mode-locked Yb-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Chinese J Lasers, 2012, 39(6): 0602006.

[18] Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122.

[19] Lee E J, Choi S Y, Jeong H, et al. Active control of all-fiber graphene devices with electrical gating[J]. Nature Communications, 2015, 6: 6851.

[20] Zapata J D, Steinberg D, Saito L A M, et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation[J]. Scientific Reports, 2016, 6: 20644.

[21] Luo Z Q, Wang J Z, Zhou M, et al. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Laser Physics Letters, 2012, 9(3): 229-233.

[22] He X Y, Liu Z B, Wang D N, et al. Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation[J]. Journal of Lightwave Technology, 2012, 30(7): 984-989.

[23] Liu X M, Yang H R, Cui Y D, et al. Graphene-clad microfiber saturable absorber for ultrafast fiber lasers[J]. Scientific Reports, 2016, 6: 20624.

[24] Liu Z B, He X Y, Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution[J]. Optics Letters, 2011, 36(16): 3024-3026.

[25] Chen T, Chen H F, Wang D N, et al. Graphene saturable absorber based on slightly tapered fiber with inner air-cavity[J]. Journal of Lightwave Technology, 2015, 33(11): 2332-2336.

[26] Zhou F, Jin X F, Hao R, et al. A graphene-based all-fiber electro-absorption modulator[J]. Journal of Optics, 2016, 45(4): 337-342.

[27] 李 威. 基于微纳光纤的石墨烯超快全光调制器研究[D]. 杭州: 浙江大学, 2013: 2.

    Li Wei. Micro/Nanofiber-based graphene ultrafast all-optical modulators[D]. Hangzhou: Zhejiang University, 2013: 2.

[28] Liu Z B, Feng M, Jiang W S, et al. Broadband all-optical modulation using a graphene-covered-microfiber[J]. Laser Physics Letters, 2013, 10(6): 065901.

[29] Zhang H J, Healy N, Shen L, et al. Enhanced all-optical modulation in a graphene-coated fiber with low insertion loss[J]. Scientific Reports, 2016, 6: 23512.

[30] Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

[31] Xu F, Chen J H, Zheng B C, et al. Polarization-dependent all-optical modulator with ultra-high modulation depth based on a stereo graphene-microfiber structure[J]. Physics, 2015: arXiv.

[32] Ubeid M F, Shabat M M. Analytical sensitivity and reflected power through a D-shape optical fiber sensor[J]. Opto-Electronics Review, 2014, 22(3): 191-195.

[33] Ubeid M F, Shabat M M. Numerical investigation of a D-shape optical fiber sensor containing graphene[J]. Applied Physics A, 2015, 118(3): 1113-1118.

[34] Fu H Y, Zhang S W, Chen H, et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor[J]. IEEE Sensor Journal, 2015, 15(10): 5478-5482.

[35] Patnaik A, Senthilnathan K, Jha R. Graphene-based conducting metal oxide coated D-shape optical fiber SPR sensor[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2437-2440.

[36] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1092-1095.

[37] Dsah J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

[38] Rifat A A, Mahdiraji G A, Ahmed R, et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2016, 8(1): 4800408.

[39] Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.

[40] Zhang H J, Healy N, Shen L, et al. Graphene-based fiber polarizer with PVB-enhanced light interaction[J]. Journal of Lightwave Technology, 2016, 34(15): 3563-3567.

[41] Li W X, Yi L L, Zheng R, et al. Fabrication and application of a graphene polarizer with strong saturable absorption[J]. Photonics Research, 2016, 4(2): 41-44.

[42] He X Y, Zhang X C, Zhang H, et al. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 55-61.

[43] Guan C Y, Li S Q, Shen Y Z, et al. Graphene-coated surface core fiber polarizer[J]. Journal of Lightwave Technology, 2015, 33(2): 349-353.

毕卫红, 马敬云, 杨凯丽, 田朋飞, 王晓愚, 李彩丽. 石墨烯光纤及其应用[J]. 激光与光电子学进展, 2017, 54(4): 040002. Bi Weihong, Ma Jingyun, Yang Kaili, Tian Pengfei, Wang Xiaoyu, Li Caili. Graphene-Based Optical Fiber and Its Applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!