Photonic Sensors, 2019, 9 (2): 02115, Published Online: Apr. 12, 2019  

Surface Measurement Using Compressed Wavefront Sensing

Author Affiliations
1 School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
2 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins CO 80623, USA
Abstract
Compressed sensing leverages the sparsity of signals to reduce the amount of measurements required for its reconstruction. The Shack-Hartmann wavefront sensor meanwhile is a flexible sensor where its sensitivity and dynamic range can be adjusted based on applications. An investigation is done by using compressed sensing in surface measurements with the Shack-Hartmann wavefront sensor. The results show that compressed sensing paired with the Shack-Hartmann wavefront sensor can reliably measure surfaces accurately. The performance of compressed sensing is compared with those of the iterative modal-based wavefront reconstruction and Fourier demodulation of Shack-Hartmann spot images. Compressed sensing performs comparably to the modal based iterative wavefront reconstruction in both simulation and experiment while performing better than the Fourier demodulation in simulation.
References

[1] D. C. Yuan, H. Y. Zhao, X. Tao, S. B. Li, X. L. Zhu, and C. P. Zhang, “Aspheric surface measurement using capacitive sensors,” Sensors, 2017, 17(6): 1355-1.1355-16.

[2] Y. Zhao, P. S. Li, C. S. Wang, and Z. B. Pu, “A novel fiber-optic sensor used for small internal curved surface measurement,” Sensors and Actuators A: Physical, 2000, 86(3): 211.215.

[3] Y. D. Li and P. Gu, “Free-form surface inspection techniques state of the art review,” Computer-Aided Design, 2004, 36(13): 1395.1417.

[4] X. Jiang, P. J. Scott, D. J. Whitehouse, and L. Blunt, “Paradigm shifts in surface metrology. part II. the current shift,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2007, 463(2085): 2071.2099.

[5] J. Riedel, S. Stürwald, and R. Schmitt, “Scanning measurement of aspheres,” Measurement, 2016, 85: 249.254.

[6] Y. Tang, X. Y. Su, Y. K. Liu, and H. L. Jing, “3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry,” Optics Express, 2008, 16(19): 15090.15096.

[7] J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” SPIE, 1995, 2576: 258-269.

[8] C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, “Metrology of thin transparent optics using Shack-Hartmann wavefront sensing,” Optical Engineering, 2004, 43: 1.12.

[9] B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery, 2001, 17(5): S573-S577.

[10] H. B. Yu, G. Y. Zhou, S. C. Fook, F. W. Lee, and S. H. Wang, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” Journal of Micromechanics and Microengineering, 2008, 18(10): 105017-1.105017-8.

[11] G. H.usler, C. Richter, K. H. Leitz, and M. C. Knauer, “Microdeflectometry.a novel tool to acquire three-dimensional microtopography with nanometer height resolution,” Optics Letters, 2008, 33(4): 396.398.

[12] W. Guo, L. Zhao, C. S. Tong, C. I. Ming, and S. C. Joshi, “Adaptive centroid-finding algorithm for freeform surface measurements,” Applied Optics, 2013, 52(10): D75.D83.

[13] X. M. Yin, L. P. Zhao, X. Li, and Z. P. Fang, “Automatic centroid detection and surface measurement with a digital Shack-Hartmann wavefront sensor,” Measurement Science and Technology, 2010, 21(1): 015304-1.015304-17.

[14] L. Zhao, N. Bai, X. Li, L. S. Ong, Z. P. Fang, and A. K. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Applied Optics, 2006, 45(1): 90.94.

[15] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, 2006, 52(4): 1289.1306.

[16] M. S. Hosseini and O. V. Michailovich, “Derivative compressive sampling with application to phase unwrapping,” in Proceeding of 2009 17th European Signal Processing Conference, Glasgow, UK, 2009, pp. 115.119.

[17] M. Rostami, O. V. Michailovich, and Z. Wang, “Surface reconstruction in gradient-field domain using compressed sensing,” IEEE Transactions on Image Processing, 2015, 24(5): 1628.1638.

[18] M. Rostami, O. Michailovich, and Z. Wang, “Image deblurring using derivative compressed sensing for optical imaging application,” IEEE Transactions on Image Processing, 2012, 21(7): 3139.3149.

[19] R. J. Noll, “Zernike polynomials and atmospheric turbulence,” Journal of the Optical Society of America, 1976, 66(3): 207.211.

[20] N. A. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” 1990, 29(7): 1174.1180.

[21] J. Polans, R. P. McNabb, J. A. Izatt, and S. Farsiu, “Compressed wavefront sensing,” Optics Letters, 2014, 39(5): 1189.1192.

[22] Y. Carmon and E. Ribak, “Phase retrieval by demodulation of a Hartmann-Shack sensor,” Optics Communications, 2003, 215(4.6): 285.288.

[23] H. Gong, O. Soloviev, M. Verhegen, and G. Vdovin, “Shack-Hartmann reflective micro profilometer,” SPIE, 2018, 10616: 106160M-1-106160M-7.

[24] E. Sakhaee and A. Entezari, “Sparse partial “Gradient-based surface reconstruction using derivatives and reconstruction from partial Fourier compressed sensing,” in Proceeding of 2012 19th data,” in Proceeding of 2016 IEEE International IEEE International Conference on Image Processing, Conference on Acoustics, Speech and Signal Orlando, FL, USA, 2012, pp. 913.916. Processing, Brisbane, QLD, Australia, 2015, pp.

[25] G. M. Dai, “Modified Hartmann-Shack wavefront 3621.3625. sensing and iterative wavefront reconstruction,”

[26] M. Rostami, O. Michailovich, and Z. Wang, SPIE, 1994, 2201: 562.573.

Eddy Mun, Ningqun GUO, Edwin CHONG, Xin WANG. Surface Measurement Using Compressed Wavefront Sensing[J]. Photonic Sensors, 2019, 9(2): 02115.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!