中国激光, 2014, 41 (7): 0708003, 网络出版: 2014-04-23  

聚焦激光束焦点光斑尺寸与样品剥离阈值的同时测量

Simultaneous Determination of Spot Size of Focused Laser Beam on Focal Plane and Laser-Ablation Thresholds of Samples
作者单位
华南理工大学理学院物理系, 广东 广州 510641
摘要
当聚焦激光束在焦平面上的光强分布为高斯分布时,理论推导了激光能量与激光在样品表面所烧蚀的坑洞半径的关系。以铝箔、铝反射镜和热敏相纸为样品,用显微镜测量出不同能量的脉冲激光在样品表面烧蚀的坑洞半径并通过数值拟合来实现对聚焦激光束的焦点光斑尺寸和样品剥离阈值的同时测量。对于脉宽为15 ns、波长为532 nm的激光,测得铝和热敏相纸的剥离阈值分别为2.5 J/cm2和0.25 J/cm2。光斑尺寸和剥离阈值两个参量的测量误差均约为±10%。该技术能够同时且简便地测量出聚焦激光束焦点的光斑尺寸和样品的剥离阈值,对研究固体与激光相互作用以及评价激光束聚焦的特性有一定的应用价值。
Abstract
The function of laser pulse energy to the radius of the crater produced by focused laser beam on sample′s surface is derived theoretically under the condition that the fluency distribution of the focused laser beam on the focal plane is Gaussian shape. An aluminum foil, an aluminum reflection mirror and a piece of thermo-sensitive photographic paper are used as samples and the radii of the craters produced by laser beam with different pulse energies on sample′s surfaces are measured with a microscope. The spot size of focused laser beam on the focal plane and the laser-ablation threshold of the sample are measured simultaneously by curve fitting. The laser-ablation thresholds of aluminum and thermo-sensitive photographic paper for 532 nm laser pulse with 15 ns pulse width are determined to be 2.5 J/cm2 and 0.25 J/cm2, respectively. Measurement errors for both spot size and laser-ablation threshold are about ±10%. It is demonstrated that the approach introduced here is able to determine spot size of the focused laser beam on the focal plane and the laser-ablation threshold of the sample conveniently and simultaneously. It is able to be used in researches on laser interaction with solid materials and to evaluate the characterization of a focused laser beam.
参考文献

[1] J S Becker, M Zoriy, J S Becker, et al.. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomics[J]. J Anal At Spectrom, 2007, 22(7): 736-744.

[2] X L Mao, O V Borisov, R E Russo. Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment[J]. Spectrochim Acta Part B, 1998, 53(5): 731-739.

[3] 李科学, 周卫东, 钱惠国, 等. 激光消融快脉冲放电等离子体光谱定量检测率合金中元素[J]. 激光与光电子学进展, 2012, 49(1): 013001.

    Li Kexue, Zhou Weidong, Qian Huiguo, et al.. Quantitative analysis of elements in aluminum alloy using laser ablation fast pulse discharge plasma spectroscopy[J]. Laser & Optoelectronics Progress, 2012, 49(1): 013001.

[4] A A Melaibari, P Molian. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: comparison of nano-and femtosecond lasers[J]. J Appl Phys, 2012, 112(10): 104303.

[5] 丁学成, 傅广生, 翟小林, 等. 靶衬间距对传输中溅射粒子密度和速度分布的影响[J]. 中国激光, 2012, 39(1): 0103005.

    Ding Xuecheng, Fu Guangsheng, Zhai Xiaolin, et al.. Influence of target-to-substrate distance on velocity and density distributions of ablated particles during their propagations[J]. Chinese J Lasers, 2012, 39(1): 0103005.

[6] 张楠, 杨景辉, 朱晓农. 飞秒激光烧蚀高定向热解石墨的超快过程研究[J]. 中国激光, 2012, 39(5): 0503002.

    Zhang Nan, Yang Jinghui, Zhu Xiaonong. Investigation of the ultrafast process of femtosecond laser ablation of high oriented pyrolytic graphite[J]. Chinese J Lasers, 2012, 39(5): 0503002.

[7] 汪月容, 李毅, 王思佳, 等. 高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导[J]. 中国激光, 2012, 39: 1203002.

    Wang Yuerong, Li Yi, Wang Sijia, et al.. Directly writing single polarization microstructure waveguide in fused silica by high repetition rate femtosecond laser[J]. Chinese J Lasers, 2012, 39(12): 1203002.

[8] J Miller, P K Yu, S J Cringle, et al.. Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed NdYAG laser[J]. Appl Opt, 2007, 46(3): 413-420.

[9] J A Arnaud, W M Hubbard, G D Mandevlle, et al.. Technique for fast measurement of Gaussian laser beam parameters[J]. Appl Opt, 1971, 10(12): 2775-2776.

[10] P J Shayler. Laser beam distribution in the focal region[J]. Appl Opt, 1978, 17(17): 2673-2674.

[11] Y C Kiang, R W Liang. Measuring focused Gaussian beam spot sizes: a practical method[J]. Appl Opt, 1983, 22(9): 1296-1297.

[12] Y Domankevitz, N S Nishioka. Measurement of laser ablation threshold with a high-speed framing camera[J]. IEEE J Quantum Electron, 1990, 26(12): 2276-2278.

[13] W P Leung, A C Tam. Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air[J]. Appl Phys Lett, 1992, 60(1): 23-25.

[14] J A Sell, D M Heffelfinger. Laser beam deflection as a probe of laser ablation of materials[J]. Appl Phys Lett, 1989, 55(23): 2435-2437.

[15] Cs Beleznai, D Vouagner, J P Girardeau-Montaut, et al.. Laser ablation threshold determination by photoelectric emission[J]. Appl Phys A, 1999, 69(1): S113-S116.

[16] Q Zhou, Y Q Chen, F F Peng, et al.. Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy[J]. Appl Opt, 2013, 52(23): 5600-5605.

[17] A H A Lutey. An improved model for nanosecond pulsed laser ablation of metals[J]. J Appl Phys, 2013, 114(8): 083108.

[18] 周奇, 彭飞飞, 李润华, 等. 用大芯径石英玻璃光纤传输兆瓦级高能激光脉冲及其在双波长LA-LIBS技术中的应用[J]. 光谱学与光谱分析, 2013, 33(12): 3392-3395.

    Zhou Qi, Peng Feifei, Li Runhua, et al.. Delivery of megawatts high energy laser pulse with large core diameter silicon fiber and its application in dual-wavelength laser-ablation laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3392-3395.

[19] Q M Lu, S S Mao, X L Mao, et al.. Delayed phase explosion during high-power nanosecond laser ablation of silicon[J]. Appl Phys Lett, 2002, 80(17): 3072-3074.

[20] Y Jiang, X Xiang, H J Wang, et al.. Damage/ablation morphology of laser conditioned sapphire under 1064 nm laser irradiation[J]. Opt & Laser Technol, 2012, 44(4): 948-953.

磨俊宇, 陈钰琦, 周奇, 李润华. 聚焦激光束焦点光斑尺寸与样品剥离阈值的同时测量[J]. 中国激光, 2014, 41(7): 0708003. Mo Junyu, Chen Yuqi, Zhou Qi, Li Runhua. Simultaneous Determination of Spot Size of Focused Laser Beam on Focal Plane and Laser-Ablation Thresholds of Samples[J]. Chinese Journal of Lasers, 2014, 41(7): 0708003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!