光子学报, 2019, 48 (4): 0412001, 网络出版: 2019-04-28   

提高复杂燃烧流场羟基示踪测速精度的方法

Method to Improve the Velocimetry Measurement Accuracy of Hydroxyl Tagging Velocimetry in Complex Combustion Flow Field
作者单位
1 西安交通大学 能源与动力学院, 西安 710049
2 西北核技术研究所 激光与物质相互作用国家重点实验室, 西安 710024
摘要
为了提高流速测量精度, 研究OH荧光图像背景抑制的方法.分析识别复杂燃烧流场中存在的背景干扰, 构建染噪的数值仿真模型; 基于干扰图像和OH标记线信号图像的特性, 采用空间变换思想, 提出了自适应差分法消除发动机燃烧室剧烈反应区域的燃烧OH荧光干扰; 利用空域上信号与背景残余的差别, 采用空间滤波法优化背景抑制结果, 最后对仿真模型和实验图片对比, 验证了该方法的有效性, 处理前后峰值信噪比提高了11.83 dB, 信噪比提高了8.66 dB, 速度计算误差改善到了1.2%.该方法可有效的抑制背景噪声, 提高测速精度, 满足激光诊断系统对测量精度的要求.
Abstract
The method for suppressing OH fluorescence images background must be researched to improve the accuracy of image processing and velocity calculation in the complex combustion Hydroxyl Tagging Velocimetry(HTV) measurement. Firstly, the background interference in the complex combustion is analyzed and identified, and the noised signal simulation model is constructed. Secondly, an adaptive difference method combined with adaptive spatial filtering is proposed for background suppression image preprocessing, based on the characteristic of residual background and OH tagging line signal. Interference in the intensive combustion reaction area is eliminated through the adaptive difference method which is utilized by inducing spatial transformation. The background interference elimination results background is optimized through adaptive spatial filtering difference method by exploiting the spatial distribution difference between the signal and the residual background. Finally, simulation and experiments are carried out to test the effectiveness of this method. Results show that, with this image preprocessing method, the signal to noise ratio is raised by 11.83 dB, the peak signal to noise ratio is elevated by 8.66 dB, while the velocimetry calculation error is improved to 1.2% demonstrating that this method meets the accuracy requirements of HTV measurements and is ready for practical application.
参考文献

[1] KOOCHESFAHANI M M, GOH A C, SCHOCK H J. Molecular tagging velocimetry(MTV) and its automotive applications[M]. The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 2004, : 143-155.

[2] ISMAILOV M M, SCHOCK H J, FEDEWA A M. Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry[J].Experiments in Fluids, 2006. 41(1): 57-65.

[3] MATT W, WALTER L. A simplified and portable RELIEF flow tagging velocimetry system(Invited)[C]. AIAA, 2008: 3757.

[4] 陈力, 杨富荣, 苏铁, 等.基于法布里-珀罗干涉仪的锐利散射测速技术研究[J]. 光子学报,2015,44(1): 0112004.

    CHEN Li, YANG Fu-long, SU Tie, et al. Interferometric rayleigh scattering velocimetry using a fabry-perot interferomete[J]. Acta Photonica Sinica, 2015, 44(1): 0112004.

[5] 张振荣, 李国华, 叶景峰, 等.超燃发动机流场组分浓度的在线测量[J]. 光学精密工程, 2016,24(4): 709-713.

    ZHANG Zhen-rong, LI Guo-hua, YE Jing-feng, et al.On-line measurement of species concentration in flow field of scramjet engine[J]. Optics and Precision Engineering, 2016, 24(4): 709-713.

[6] GOYNE C P, MCDANIEL J C, KRAUSS R H, et al. Velocity measurement in a dual-mode supersonic combustor using particle image velocimetry[C]. AIAA, 2001: 1761.

[7] SMITH C T, GOYNE C P. Application of stereoscopic particle image velocimetry to a dual-mode scramjet[J]. Journal of Propulsion & Power, 2011, 27(6): 1178-1185.

[8] 朊驰, 孙传东, 白永林, 等. PIV系统水洞流场测量准确度与误差分析[J]. 光子学报, 2008, 37(10): 2005-2008.

    RUAN Chi, SUN Chuan-dong, BAI Yong-lin, et al. Precision and errors analysis of PIV used for the watertunnel flow field displaying and measuring system[J]. Acta Photonica Sinica, 2008, 37(10): 2005-2008.

[9] 胡海豹, 宋保维, 朊驰,等.PIV水下流场测试系统试验研究[J]. 光子学报, 2007, 36(10): 1928-1932.

    HU Hai-bao, SONG Bao-wei, RUAN Chi, et al. Experimental research on particle image velocimetry measure system in fluid field. [J]. Acta Photonica Sinica, 2007, 36(10): 1928-1932.

[10] JOHN S, LAURENCE B. Non-intrusive space shuttle main engine nozzle exit diagnostics[C]. AIAA, 1988: 3088.

[11] WEHRMEYER J A, RIBAROV L A, OGUSS D A, et al. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(22): 6912-6917.

[12] PITZ R, LAHR M, DOUGLAS Z, et al. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics, 2005, 44(31): 6692-6700.

[13] PERKINS A N, RAMSEY M, PITZ R W, et al. Investigation of a bow shock in a shock tube flow facility using hydroxyl tagging velocimetry(HTV)[C]. AIAA, 2011: 1092.

[14] 叶景峰, 胡志云, 刘晶儒.等.分子标记速度测量技术及应用研究进展[J]. 实验流体力学, 2015, 29(7):1689-1695.

    YE Jing-feng, HU Zhi-yun, LIU Jing-ru, et al. Development and application of molecular tagging velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(7): 1689-1695.

[15] 叶景峰, 邵珺, 李国华, 等.羟基分子标记示踪速度测量中的强振动干扰抑制[J]. 光学精密工程, 2017, 25(7):1689-1695.

    YE Jing-feng, SHAO Jun, LI Guo-hua, et al. Vibration disturbance suppression in velocity measurements by hydroxyl tagging velocimetry[J]. Optics and Precision Engineering, 2017, 25(7): 1689-1695.

[16]

    GENDRICH C P, KOOCHESFAHANI M M. A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry(MTV)[J]. Experiments in Fluids, 1996, 22(1): 67-77.

[17] RAMSEY M, PITZ R. Template matching for improved accuracy in molecular tagging velocimetry[J]. Experiments in Fluids, 2011, 51(3): 811-819.

[18] WATER W, WILLEM N. How to find patterns written in turbulent air[J]. Experiments in Fluids, 2013, 54(9): 1574-1583.

[19] GONZALEZ R S, MANAMMEN B M, BOWERSOX R D W, et al. A method to analyze molecular tagging velocimetry data using the Hough transform[J]. Review of Scientific Instruments, 2015, 86: 105106-105120.

[20] 邵珺, 叶景峰, 胡志云, 等.用于超燃流场羟节标记示踪背景抑制的逐步逼近特征窗口滤波[J]. 光学精密工程, 2015, 23(10):221-228.

    SHAO Jun, YE Jing-feng, HU Zhi-yun, et al. Progressive approach characteristic window filtering for HTV background suppression in supersonic combustion field[J]. Optics and Precision Engineering, 2015, 23(10): 221-228.

[21] 邵珺, 叶景峰, 李景银, 等.基于燃烧流场HTV技术的背景去除方法[J]. 工程热物理学报, 2015, 36(11):2531-2535.

    SHAO Jun, YE Jing-feng, LI Jing-yin, et al. A background removal approach to the study of hydroxyl tagging velocimetry in supersonic combustion flow[J]. Journal of Engineering Thermophysics, 2015, 36(11): 2531-2535.

邵珺, 方波浪, 叶景峰, 王晟, 李景银. 提高复杂燃烧流场羟基示踪测速精度的方法[J]. 光子学报, 2019, 48(4): 0412001. SHAO Jun, FANG Bo-lang, YE Jing-feng, WANG Sheng, LI Jing-yin. Method to Improve the Velocimetry Measurement Accuracy of Hydroxyl Tagging Velocimetry in Complex Combustion Flow Field[J]. ACTA PHOTONICA SINICA, 2019, 48(4): 0412001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!