发光学报, 2016, 37 (9): 1031, 网络出版: 2016-11-23   

溶剂对石墨烯量子点荧光性质的影响

Effects of Solvent on Luminescent Properties of GQDs
作者单位
天津工业大学 理学院, 天津 300387
摘要
采用柠檬酸热解法制备了石墨烯量子点(GQDs), 研究了非极性溶剂戊烷, 极性溶剂乙醇、丙酮、乙二醇对GQDs荧光性质的影响。透射电子显微镜(TEM)和原子力显微镜(AFM)图像表明, 制备的GQDs尺寸分布在2~12 nm(平均尺寸为4.9 nm), 分散均匀, 高度分布在0.5~2 nm。吸收光谱表明, GQDs具有明显的紫外吸收特性, 吸收峰位于259 nm和274 nm。光致发光谱表明, GQDs的发光具有明显的溶剂依赖性。GQDs在极性溶剂乙醇、丙酮、乙二醇中, 发光峰的位置依赖于激发波长, 发射波长在可见光区。而在非极性溶剂戊烷中, GQDs表现出对激发波长不依赖的荧光性能, 且发射波长在近紫外。
Abstract
The graphene quantum dots(GQDs) were prepared by pyrolyzing citric acid and dissolved with different organic solvents. The influence of solvent on luminescence properties is investigated. Transmission electron microscope(TEM), along with atomic force microscope(AFM) was employed for the morphology and structure analysis of the as-prepared samples. The results show that GQDs diameters are distributed in the range of 2-12 nm(4.9 nm average diameter). Optical properties of the as-prepared samples were characterized by ultraviolet-visible spectra(UV-Vis) and fluorescence spectrophotometer. The photoluminescence spectra depict that the GQDs exhibited solvent-dependent behaviors. The position of the peak fluorescence of GQDs in polar solvent ethanol, acetone and ethylene glycol is dependent on excitation wavelength, emission wavelength is in a visible light area. The fluorescence of GQDs in a nonpolar solvent pentane is independent of excitation wavelength, the strong emission appeared in the near-UV region.
参考文献

[1] NOVOSELOV K S, GEIM A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.

[2] GEIM A K, Novoselov K S. The rise of graphene[J]. Nat. Mater., 2007, 6(3):183-191.

[3] NOVOSELOV K S, FALKO V I, COLOMBO L, et al.. A roadmap for graphene[J]. Nature, 2012, 490(7419):192-200.

[4] PATON K R, VARRLA E, BACKES C, et al.. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat. Mater., 2014, 13(6):624-630.

[5] PONOMARENKO L A, SCHEDION F, KATSNELSON M I, et al.. Chaotic Dirac billiard in graphene quantum dots[J]. Science, 2008, 320(5874):356-358.

[6] SHEN J H, ZHU Y H, YANG X L, et al.. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chem. Commun., 2012, 48(31):3686-3699.

[7] ZHANG Z P, ZHANG J, CHEN N, et al.. Graphene quantum dots: an emerging material for energy-related applications and beyond[J]. Energy Environ. Sci., 2012, 5(10):8869-8890.

[8] ZHANG M, BAI L L, SHANG W H, et al.. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells[J]. J. Mater. Chem., 2012, 22(15):7461-7467.

[9] 吴春霞,宋泽琳. 一步水热法合成的石墨烯量子点及其在锰离子探测中的应用[J]. 发光学报, 2015, 36(4):413-418.

    WU C X, SONG Z L. One-step hydrothermal synthesis of graphene quantum dots and the application for Mn2+ detection[J]. Chin. J. Lumin., 2015, 36(4):413-418. (in Chinese)

[10] ZHU S J, SONG Y B, ZHAO X H, et al.. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano. Res., 2015, 8(2):355-381.

[11] OZFIDAN I, GUCLU AD, KORKUSINSKI M, et al.. Theory of optical properties of graphene quantum dots[J]. Phys. Status Solidi-Rapid Res. Lett., 2016, 10(1):102-110.

[12] DONG Y, CHEN C, ZHENG X, et al.. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. J. Mater. Chem., 2012, 22(18):8764-8766.

[13] LIU R, WU D, FENG X, et al.. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology[J]. J. Am. Chem. Soc., 2011, 133(39):15221-15223.

[14] PAN D Y, GUO L, ZHANG J C, et al.. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence[J]. J. Mater. Chem., 2012, 22(8):3314-3318.

[15] CHEN S, LIU J W, CHEN M L, et al.. Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation[J]. Chem. Commun., 2012, 48(61):7637-7639.

[16] ZHU S, ZHANG J, QIAO C, et al.. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chem. Commun., 2011, 47(24):6858-6860.

[17] ZHU S J, ZHANG J H, TANG S J, et al.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications[J]. Adv. Funct. Mater., 2012, 22(22):4732-4740.

[18] FAN L S, HU Y W, WANG X, et al.. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT[J]. Talanta, 2012, 101:192-197.

[19] LI L L, WU G H, YANG G H, et al.. Focusing on luminescent graphene quantum dots: current status and future perspectives[J]. Nanoscale, 2013, 5(10):4015-4039.

[20] CUSHING S K, Li M, HUANG F Q, et al.. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J]. ACS Nano, 2014, 8(1):1002-1013.

[21] LAKOWICZ J. R. Principles of Fluorescence Spectroscopy[M]. New York: Biswas Hope press, 2006.

[22] KHARA D C, SAMANTA A. Solvation dynamics and red-edge effect of two electrically charged solutes in an imidazolium ionic liquid[J]. Indian J. Chem., 2010, 49:714-720.

[23] CAO L, MEZIANI M J, SAHU S, et al.. Photoluminescence properties of graphene versus other carbon nanomaterials[J]. Accounts Chem. Res., 2013, 46(1):171-180.

[24] LI Y, HU Y, ZHAO Y, et al.. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011, 23(6):776-780.

[25] PAN D Y, ZHANG J C, LI Z, et al.. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv. Mater., 2010, 22(6):734-738.

[26] EDA G, LIN Y Y, MATTEVI C, et al.. Blue photoluminescence from chemically derived graphene oxide[J]. Adv. Mater., 2010, 22(4):505-509.

[27] SHEN J, ZHU Y, YANG X, et al.. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[J]. New. J. Chem., 2012, 36(1):97-101.

[28] ZHOU X J, ZHANG Y, WANG C, et al.. Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano, 2012, 6(8):6592-6599.

姬子晔, 张海明, 吴磊, 白小刚, 黄丹. 溶剂对石墨烯量子点荧光性质的影响[J]. 发光学报, 2016, 37(9): 1031. JI Zi-ye, ZHANG Hai-ming, WU Lei, BAI Xiao-gang, HUANG Dan. Effects of Solvent on Luminescent Properties of GQDs[J]. Chinese Journal of Luminescence, 2016, 37(9): 1031.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!