激光与光电子学进展, 2016, 53 (8): 080604, 网络出版: 2016-08-11  

基于π移相光纤布拉格光栅的高精度温度测量 下载: 577次

High Precision Temperature Measurement Based on π-Phase-Shifted Fiber Bragg Grating
作者单位
山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
摘要
光热效应会引起π移相光纤布拉格光栅的频率起伏,故将入射激光衰减至单光子量级,以消除光热效应的影响。通过对入射单光子信号进行强度调制,使用锁相放大器直接解调光电转换的晶体管晶体管逻辑电平(TTL)信号,利用π移相光纤布拉格光栅对环境温度进行测量,温度测量精度达到0.14 ℃。
Abstract
The photothermal effect can induce the frequency fluctuations of π-phase-shifted fiber Bragg grating (PSFBG), so the incident laser is attenuated to the single photon level in order to eliminate the photothermal effect. The intensity of the incident single photon is modulated, and then the transistor-transistor logics (TTL) signal pulses of photoelectric conversion are directly demodulated with the lock-in amplifier. Thereby the environmental temperature is measured by using the PSFBG. The precision for temperature measurement is up to 0.14 ℃.
参考文献

[1] Hill K O, Meltz G. Fiber Bragg grating technology fundamental and overview[J]. J Lightwave Technol, 1997, 15(8): 1263-1276.

[2] He J, Wang Y, Liao C, et al. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser[J]. Opt Lett, 2015, 40(9): 2008-2011.

[3] Liu T, Han M. Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection[J]. IEEE Sensors Journal, 2012, 12(7): 2368-2373.

[4] Zhang Q, Liu N, Fink T, et al. Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber[J]. IEEE Photon Technol Lett, 2012, 24(17): 1519-1522.

[5] Chehura E, James S W, Lawson N, et al. Pressure measurements on aircraft wing using phase-shifted fibre Bragg grating sensors[C]. SPIE, 2009, 7503: 750334.

[6] Zhao Y, Chang J, Wang Q, et al. Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG[J]. Opt Express, 2013, 21(19): 22515-22522.

[7] Li Q, Yan F P, Peng W J, et al. A single frequency, linear cavity Tm-doped fiber laser based on phase-shifted FBG filter[J]. Optics & Laser Technology, 2014, 56: 304-306.

[8] Ayotte S, Costin F, Aubé M, et al. Semiconductor laser white noise suppression by optical filtering with ultra-narrowband FBG[C]. Optical Fiber Communication Conference, 2011: OThP5.

[9] Ayotte S, Costin F, Brochu G, et al. White noise filtered C-band tunable laser for coherent transmission systems[C]. Optical Fiber Communication Conference, 2012: OTu1G.5.

[10] Chow J H, Sheard B S, Mc Clelland D E, et al. Photothermal effects in passive fiber Bragg grating resonators[J]. Opt Lett, 2005, 30(7): 708-710.

[11] Littler I C M, Grujic T, Eggleton B J. Photothermal effects in fiber Bragg gratings[J]. Appl Opt, 2006, 45(19): 4679-4685.

[12] Painchaud Y, Aubé M, Broch G, et al. Ultra-narrowband notch filtering with highly resonant fiber Bragg gratings[C]. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, 2010: BTuC3.

[13] Wang X, Zhang G, Chen R, et al. Detection efficiency enhancement of single-photon detector at 1.55-μm by using of single photons lock-in and optimal threshold[J]. Optics & Laser Technology, 2012, 44(6): 1773-1775.

[14] Shivananju B N, Asokan S, Misra A. Study on effect of optical wavelength on photo induced strain sensitivity in carbon nanotubes using fiber Bragg grating[J]. J Phys D: Appl Phys, 2015, 48(27): 275502.

[15] 张颖, 刘志国, 郭转运, 等. 高灵敏度光纤光栅压力传感器及其压力传感特性的研究[J]. 光学学报, 2002, 22(1): 89-91.

    Zhang Ying, Liu Zhiguo, Guo Zhuanyun, et al. A high-sensitivity fiber grating pressure sensor and its pressure sensing characteristics[J]. Acta Optica Sinica, 2002, 22(1): 89-91.

[16] 何少灵, 郝凤欢, 刘鹏飞, 等. 温度实时补偿的高精度光纤光栅压力传感器[J]. 中国激光, 2015, 42(6): 0605003.

    He Shaoling, Hao Fenghuan, Liu Pengfei, et al. High precision fiber Bragg grating pressure sensor with real-time temperature compensation[J]. Chinese J Lasers, 2015, 42(6): 0605003.

于波, 景明勇, 胡建勇, 张国峰, 肖连团, 贾锁堂. 基于π移相光纤布拉格光栅的高精度温度测量[J]. 激光与光电子学进展, 2016, 53(8): 080604. Yu Bo, Jing Mingyong, Hu Jianyong, Zhang Guofeng, Xiao Liantuan, Jia Suotang. High Precision Temperature Measurement Based on π-Phase-Shifted Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080604.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!