Photonics Research, 2019, 7 (8): 08000890, Published Online: Jul. 25, 2019   

Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy Download: 719次

Yao Fan 1,2,3†Jiasong Sun 1,2,3†Qian Chen 1,2,5Xiangpeng Pan 1,2,3Lei Tian 4Chao Zuo 1,2,3,*
Author Affiliations
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing 210094, China
3 Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
4 Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
5 e-mail: chenqian@njust.edu.cn
Copy Citation Text

Yao Fan, Jiasong Sun, Qian Chen, Xiangpeng Pan, Lei Tian, Chao Zuo. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. Photonics Research, 2019, 7(8): 08000890.

References

[1] PopescuG., Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).

[2] A. Barty, K. Nugent, D. Paganin, A. Roberts. Quantitative optical phase microscopy. Opt. Lett., 1998, 23: 817-819.

[3] E. Cuche, F. Bevilacqua, C. Depeursinge. Digital holography for quantitative phase-contrast imaging. Opt. Lett., 1999, 24: 291-293.

[4] Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, Y. Park. Profiling individual human red blood cells using common-path diffraction optical tomography. Sci. Rep., 2014, 4: 6659.

[5] G. Popescu. Quantitative phase imaging of nanoscale cell structure and dynamics. Methods Cell Biol., 2008, 90: 87-115.

[6] C. J. Mann, L. Yu, C.-M. Lo, M. K. Kim. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express, 2005, 13: 8693-8698.

[7] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 2005, 30: 468-470.

[8] B. Kemper, G. von Bally. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt., 2008, 47: A52-A61.

[9] M. R. Teague. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am., 1983, 73: 1434-1441.

[10] S. S. Kou, L. Waller, G. Barbastathis, C. J. Sheppard. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt. Lett., 2010, 35: 447-449.

[11] J. C. Petruccelli, L. Tian, G. Barbastathis. The transport of intensity equation for optical path length recovery using partially coherent illumination. Opt. Express, 2013, 21: 14430-14441.

[12] C. Zuo, Q. Chen, W. Qu, A. Asundi. High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt. Express, 2013, 21: 24060-24075.

[13] C. Zuo, Q. Chen, W. Qu, A. Asundi. Noninterferometric single-shot quantitative phase microscopy. Opt. Lett., 2013, 38: 3538-3541.

[14] C. Zuo, Q. Chen, Y. Yu, A. Asundi. Transport-of-intensity phase imaging using Savitzky–Golay differentiation filter-theory and applications. Opt. Express, 2013, 21: 5346-5362.

[15] F. Pfeiffer, T. Weitkamp, O. Bunk, C. David. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys., 2006, 2: 258-261.

[16] D. Hamilton, C. Sheppard. Differential phase contrast in scanning optical microscopy. J. Microsc., 1984, 133: 27-39.

[17] B. Kachar. Asymmetric illumination contrast: a method of image formation for video light microscopy. Science, 1985, 227: 766-768.

[18] S. B. Mehta, C. J. Sheppard. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt. Lett., 2009, 34: 1924-1926.

[19] L. Tian, J. Wang, L. Waller. 3d differential phase-contrast microscopy with computational illumination using an LED array. Opt. Lett., 2014, 39: 1326-1329.

[20] L. Tian, L. Waller. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express, 2015, 23: 11394-11403.

[21] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 2013, 7: 739-745.

[22] X. Ou, R. Horstmeyer, C. Yang, G. Zheng. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett., 2013, 38: 4845-4848.

[23] L. Tian, X. Li, K. Ramchandran, L. Waller. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express, 2014, 5: 2376-2389.

[24] C. Zuo, J. Sun, Q. Chen. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express, 2016, 24: 20724-20744.

[25] J. Sun, C. Zuo, L. Zhang, Q. Chen. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Sci. Rep., 2017, 7: 1187.

[26] C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, Q. Chen. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep., 2017, 7: 7654.

[27] J. Li, Q. Chen, J. Sun, J. Zhang, X. Pan, C. Zuo. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy. Opt. Express, 2018, 26: 27599-27614.

[28] J. Sun, C. Zuo, J. Zhang, Y. Fan, Q. Chen. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep., 2018, 8: 7669.

[29] J. Sun, Q. Chen, Y. Zhang, C. Zuo. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomed. Opt. Express, 2016, 7: 1336-1350.

[30] D. Lee, S. Ryu, U. Kim, D. Jung, C. Joo. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed. Opt. Express, 2015, 6: 4912-4922.

[31] C. Zuo, J. Sun, S. Feng, M. Zhang, Q. Chen. Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging. Opt. Lasers Eng., 2016, 80: 24-31.

[32] W. Lee, D. Jung, S. Ryu, C. Joo. Single-exposure quantitative phase imaging in color-coded LED microscopy. Opt. Express, 2017, 25: 8398-8411.

[33] Z. F. Phillips, M. Chen, L. Waller. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC). PLoS ONE, 2017, 12: e0171228.

[34] M. Kellman, M. Chen, Z. F. Phillips, M. Lustig, L. Waller. Motion-resolved quantitative phase imaging. Biomed. Opt. Express, 2018, 9: 5456-5466.

[35] Y.-Z. Lin, K.-Y. Huang, Y. Luo. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination. Opt. Lett., 2018, 43: 2973-2976.

[36] H.-H. Chen, Y.-Z. Lin, Y. Luo. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging. J. Biophoton., 2018, 11: e201700364.

[37] A. Robey, V. Ganapati. Optimal physical preprocessing for example-based super-resolution. Opt. Express, 2018, 26: 31333-31350.

[38] KellmanM.BostanE.RepinaN.WallerL., “Physics-based learned design: optimized coded-illumination for quantitative phase imaging,” IEEE Trans. Comput. Imaging (to be published).

[39] M. Chen, Z. F. Phillips, L. Waller. Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt. Express, 2018, 26: 32888-32899.

[40] H. Rose. Nonstandard imaging methods in electron microscopy. Ultramicroscopy, 1976, 2: 251-267.

[41] D. Hamilton, C. Sheppard, T. Wilson. Improved imaging of phase gradients in scanning optical microscopy. J. Microsc., 1984, 135: 275-286.

[42] J. Sun, Q. Chen, J. Zhang, Y. Fan, C. Zuo. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett., 2018, 43: 3365-3368.

[43] C. J. Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, A. Diaspro. Interpretation of the optical transfer function: significance for image scanning microscopy. Opt. Express, 2016, 24: 27280-27287.

[44] BerteroM.BoccacciP., Introduction to Inverse Problem in Imaging (CRC Press, 1998).

[45] Y. Fan, J. Sun, Q. Chen, J. Zhang, C. Zuo. Wide-field anti-aliased quantitative differential phase contrast microscopy. Opt. Express, 2018, 26: 25129-25146.

[46] R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, C. Yang. Standardizing the resolution claims for coherent microscopy. Nat. Photonics, 2016, 10: 68-71.

[47] C. Zuo, J. Sun, S. Feng, Y. Hu, Q. Chen. Programmable colored illumination microscopy (PCIM): a practical and flexible optical staining approach for microscopic contrast enhancement. Opt. Lasers Eng., 2016, 78: 35-47.

Yao Fan, Jiasong Sun, Qian Chen, Xiangpeng Pan, Lei Tian, Chao Zuo. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. Photonics Research, 2019, 7(8): 08000890.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!