太赫兹科学与电子信息学报, 2017, 15 (2): 192, 网络出版: 2017-06-06   

基于 T型石墨烯超材料可调电磁诱导透明效应

Tunable electromagnetically induced transparency based on T-shaped graphene metamaterials
曹妍妍 1,2,*李悦 1,2刘元忠 1,2张玉萍 1,2张会云 1,2
作者单位
1 山东科技大学 a.电子通信与物理学院
2 b.青岛市太赫兹技术重点实验室,山东青岛 266510
摘要
基于石墨烯电导率的可调性,设计了 T型石墨烯纳米超材料结构,实现对电磁诱导透明(EIT)效应的动态调谐。研究发现,当 2个石墨烯条互相靠近时,由于二者间存在较强耦合,发生相消干涉,因此出现透明窗口。同时讨论了石墨烯条长度、缝宽、入射偏振角等几何参数对 EIT效应的影响。研究结果表明,耦合强度随着缝宽的增加而减弱;随着入射偏振角的增加也呈现减弱趋势;随着石墨烯条长度的增加,透明窗口发生红移现象,且第一个下降峰强度明显增加。此外,当费米能级由 0.3 eV增加到 0.9 eV时,共振频率由 24 THz蓝移至 35 THz,且强度增强,证实了改变石墨烯的费米能级,能够调节透明窗口的位置。并且透明窗口附近有明显的群速度延迟(0.05 ps左右),即可以实现对光速的减慢。
Abstract
A tunable graphene nanostructure metamaterial is designed in order to obtain the Electromagnetically Induced Transparency(EIT) which is analogs to the atomic EIT. By placing the light mode and dark mode closer, a transparency window is shaped due to the strong coupling between them. Meanwhile, the effects of gap size, strip length, coupling location, incident polarization angle and refractive index on the EIT phenomenon are investigated. The results show that the coupling strength becomes weaker as the width of gap increases, and a second window occurs when the dark mode shifts away from the center of the light mode. In addition, changing the Fermi energy of the graphene could bring a different transparency window as well as a tunable group delay. This work may provide applications in the field of photonics, biological sensing and slow light devices.
参考文献

[1] CHANG W S,LASSITER J B,SWANGLAP P,et al. A plasmonic Fano switch[J]. Nano Letters, 2012,12(9):4977-4982.

[2] HARRIS S E,FIELD J E,IMAMO.LU A. Nonlinear optical processes using electromagnetically induced transparency[J]. Physical Review Letters, 1990,64(10):1107-1107-6.

[3] FEDOTOV V A,ROSE M,PROSVIRNIN S L,et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007,99(14):147401.

[4] CHEN C Y,UN I W,TAI N H,et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Optics Express, 2009,17(17):15372-15380.

[5] ZHANG J,XIAO S,JEPPESEN C,et al. Electromagnetically induced transparency in metamaterials at near-infrared frequency[J]. Optics Express, 2010,18(16):17187-17192.

[6] LI Z,MA Y,HUANG R,et al. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Optics Express, 2011,19(9):8912-8919.

[7] NA B,SHI J,GUAN C,et al. From electromagnetically induced transparency to absorption in planar optical metamaterials[J]. Chinese Optics Letters, 2013,11(11):62-67.

[8] SHAO Jian,LI Jie,LI Jiaqi,et al. Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial[J]. Applied Physics Letters, 2013,102(3):034106-034106-4.

[9] HE X J,WANG L,WANG J M,et al. Electromagnetically induced transparency in planar complementary metamaterial for refractive index sensing applications[J]. Journal of Physics D:Applied Physics, 2013,46(36):365302.

[10] XU H,LU Y,LEE Y P,et al. Studies of electromagnetically induced transparency in metamaterials[J]. Optics Express, 2010,18(17):17736-17747.

[11] JIN X R,LU Y,ZHENG H,et al. Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance[J]. Optics Communications, 2011,284(19):4766-4768.

[12] ZHANG Y,JIA T Q,ZHANG H M,et al. Fano resonances in disk-ring plasmonic nanostructure:strong interaction between bright dipolar and dark multipolar mode[J]. Optics Letters, 2012,37(23):4919-4921.

[13] LIU H,LI B,ZHENG L,et al. Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures[J]. Optics Letters, 2013,38(6):977-979.

[14] CHEN L,WEI Y M,ZANG X F,et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies[J]. Scientific Reports, 2016(6):22027-22027-6.

[15] WUNSCH B,STAUBER T,SOLS F,et al. Dynamical polarization of graphene at finite doping[J]. New Journal of Physics, 2006,8(12):318-318-17.

[16] HWANG E H,SARMA S D. Dielectric function,screening, and plasmons in two-dimensional graphene[J]. Physical Review B, 2007,75(20):205418-205418-5.

[17] JABLAN M,BULJAN H,SOLJA.I. M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009,80(24): 245435-245435-8.

[18] SHI X,HAN D,DAI Y,et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Optics Express, 2013,21(23):28438-28443.

[19] CHENG H, CHEN S,YU P,et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Applied Physics Letters, 2013,103(20):203112-203112-4.

[20] FALLAHI A,PERRUISSEAU-CARRIER J. Manipulation of giant Faraday rotation in graphene metasurfaces[J]. Applied Physics Letters, 2012,101(23):231605-231605-8.

[21] DING J,ARIGONG B,REN H,et al.Tunable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 2014,(4):6128-6128-4.

[22] LUK'YANCHUK B,ZHELUDEV N I,Maier S A,et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010,9(9):707-715.

[23] YE J,WEN F,SOBHANI H,et al. Plasmonic nanoclusters:near field properties of the Fano resonance interrogated with SERS[J]. Nano Letters, 2012,12(3):1660-1667.

[24] LIU S D,YANG Z,LIU R P,et al. High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity[J]. The Journal of Physical Chemistry C, 2011,115(50):24469-24477.

[25] VERELLEN N,VAN D P,HUANG C,et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing[J]. Nano Letters, 2011,11(2):391-397.

[26] HAO F,SONNEFRAUD Y,DORPE P V,et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008,8(11):3983-3988.

[27] KOPPENS F H L,CHANG D E,GARCIA de Abajo F J. Graphene plasmonics:a platform for strong light-matter interactions[J]. Nano Letters, 2011,11(8):3370-3377.

[28] ZHAN T,SHI X,DAI Y,et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics:Condensed Matter, 2013,25(21):215301-215301-8.

[29] FANG Z,THONGRATTANASIRI S,SCHLATHER A,et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene[J]. ACS Nano, 2013(7):2388-2395.

[30] ZHANG S,GENOV D A,WANG Y,et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4):047401-047401-4.

[31] HAU L V,HARRIS S E,DUTTON Z,et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999,397(6720):594-598.

[32] SCHNORRBERGER U,THOMPSON J D,TROTZKY S,et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator[J]. Physical Review Letters, 2009,103(3):033003-033003-4.

曹妍妍, 李悦, 刘元忠, 张玉萍, 张会云. 基于 T型石墨烯超材料可调电磁诱导透明效应[J]. 太赫兹科学与电子信息学报, 2017, 15(2): 192. CAO Yanyan, LI Yue, LIU Yuanzhong, ZHANG Yuping, ZHANG Huiyun. Tunable electromagnetically induced transparency based on T-shaped graphene metamaterials[J]. Journal of terahertz science and electronic information technology, 2017, 15(2): 192.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!