激光与光电子学进展, 2016, 53 (5): 050001, 网络出版: 2016-05-05   

四波混频光生毫米波技术研究进展 下载: 1454次

Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing
作者单位
1 宁波大学信息科学与工程学院, 浙江 宁波 315211
2 宁波教育学院网络与教育技术中心, 浙江 宁波 315016
引用该论文

刘丽, 徐铁峰, 戴振祥, 刘太君, 戴世勋, 王训四, 张秀普. 四波混频光生毫米波技术研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050001.

Liu Li, Xu Tiefeng, Dai Zhenxiang, Liu Taijun, Dai Shixun, Wang Xunsi, Zhang Xiupu. Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050001.

参考文献

[1] 谢世钟, 陈明华, 陈宏伟. 微波光子学研究的进展[J]. 中兴通信技术, 2009, 15(3): 6-10.

    Xie Shizhong, Chen Minghua, Chen Hongwei. Advance in microwave photonics[J]. ZTE Technology Journal, 2009, 15(3): 6-10.

[2] Yao J. Microwave photonics[J]. J Lightwave Technol, 2009, 27(3): 314-335.

[3] Davies P A, Foord A P, Razavi K E. Millimeter-wave signal generation by optical filtering of frequency modulated laser spectra[J]. Electron Lett, 1995, 31(20): 1754-1756.

[4] Fukushima S, Silva F C C, Muramoto Y, et al.. Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers and a unitraveling-carrier photodiode[J]. J Lightwave Technol, 2003, 21(12): 3043-3051.

[5] O′Reilly J J, Lane P M, Heidemann R, et al.. Optical generation of very narrow linewidth millimeter wave signals[J]. Electron Lett, 1992, 28(25): 2309-2311.

[6] Yu J, Gu J, Liu X, et al.. Seamless integration of an 8×2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM[J]. IEEE Photonic Technol Lett, 2005, 17(9): 1986-1988.

[7] Smith G H, Novak D. Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects[J]. IEEE Photonic Technol Lett, 1998, 10(1): 141-143.

[8] Ma J, Yu J, Yu C, et al.. Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation[J]. Opt Commun, 2007, 280(2): 317-326.

[9] Qi G, Yao J P, Seregelyi J, et al.. Optical generation band distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J Lightwave Technol, 2005, 23(9): 2687-2695.

[10] Chen X, Deng Z, Yao J. Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 804-809.

[11] 沈一春. 受激布里渊散射在RoF系统中的应用研究[D]. 杭州: 浙江大学, 2005: 18-30.

    Shen Yichun. Study on applications of stimulated Brillouin scattering in RoF systems[D]. Hangzhou: Zhejiang University, 2005: 18-30.

[12] Galili M, Oxenlwe L K, Zibar D, et al.. 160 Gb/s Raman-assisted SPM wavelength converter[C]. 30th European Conference on Optical Communication, Stockholm, Sweden, 2004.

[13] Jia Z, Yu J, Chang J K. All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems[J]. IEEE Photonic Technol Lett, 2005, 17(12): 2724-2726.

[14] Leesti B, Zilkie A J, Aitchison J S, et al.. Broad-band wavelength up-conversion of picosecond pulses via four-wave mixing in a quantum-dash waveguide[J]. IEEE Photonic Technol Lett, 2005, 17(5): 1046-1048.

[15] Inoue K, Yoshino M. Noise suppression effect in cascaded wavelength conversion using light-injected DFB-LDs[J]. Electron Lett, 1996, 32(23): 2165-2166.

[16] Shen Y, Zhang X, Chen K. Optical single sideband modulation of 11-GHz ROF system using stimulated Brillouin scattering[J]. IEEE Photonic Technol Lett, 2005, 17(6): 1277-1279.

[17] Ma J, Yu J, Yu C, et al.. Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration[J]. J Lightwave Technol, 2006, 24(7): 2851-2858.

[18] Wang Q, Zeng F, Rideout H, et al.. Millimeter-wave generation based on four-wave mixing in an SOA[C]. International Topical Meeting on Microwave Photonics, Grenoble, France, 2006.

[19] Ma J, Yu J, Yu C, et al.. Reducing polarization sensitivity for all-optical wavelength conversion of the optical packets based on FWM in HNL-DSF using co-polarized pump scheme[J]. Opt Commun, 2006, 260(2): 522-527.

[20] Schneider T. Nonlinear optics in telecommunications[M]. New York: Springer-Verlag Berlin Heidelberg, 2004: 167-200.

[21] Agrawal G P. Nonlinear fiber optics (4th edition)[M]. Boston: Academic Press, 2007: 402-409.

[22] 迟楠, 齐江. SOA四波混频波长变换器的理论优化与实验研究[J]. 光电子·激光, 2000, 11(5): 457-460.

    Chi Nan, Qi Jiang. Theoretical optimization and experiment of SOA wavelength converter based on four-wave-mixing[J]. Journal of Optoelectronics·Laser, 2000, 11(5): 457-460.

[23] Seo J H, Choi C S, Kang Y S, et al.. SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 959-966.

[24] Kelly A E, Ellis A D, Nesset D, et al.. 100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier[J]. Electron Lett, 1998, 34(20): 1955-1956.

[25] D′Ottavi A, Spano P, Hunziker G, et al.. Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval[J]. IEEE Photonic Technol Lett, 1998, 10(7): 952-954.

[26] Wang Q, Rideout H, Zeng F, et al.. Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photonic Technol Lett, 2006, 18(23): 2460-2462.

[27] Kim H J, Song H J, Song J I. All-optical frequency up-conversion technique using four-wave mixing in semiconductor optical amplifiers for radio-over-fiber applications[C]. Proceedings of IEEE/MTT-S International Microwave Symposium, Honolulu, US, 2007: 67-70.

[28] Kim H J, Song J I. Simultaneous WDM RoF signal generation utilizing an all-optical frequency up-converter based on FWM in an SOA[J]. IEEE Photonic Technol Lett, 2011, 23(12): 828-830.

[29] Filion B, Ng W C, Nguyen A T, et al.. Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier[J]. Opt Express, 2013, 21(17): 19825-19833.

[30] Li M, Chen H, Yin F, et al.. Full-duplex 60-GHz RoF system with optical local oscillating carrier distribution scheme based on FWM effect in SOA[J]. IEEE Photonic Technol Lett, 2009, 21(22): 1716-1718.

[31] Lu J, Yu J J, Zhou H, et al.. Polarization insensitive wavelength conversion based on dual-pump four-wave mixing for polarization multiplexing signal in SOA[J]. Opt Commun, 2011, 284(22): 5364-5371.

[32] Xiao Y, Yu J. Novel 60 GHz RoF system with optical single sideband mm-wave signal generation and wavelength reuse for uplink connection[J]. Opt Commun, 2012, 285(3): 229-232.

[33] Xiang Y, Jiang N, Wang D, et al.. Multiple basestation RoF system enabled by multiple wavelength conversion based on polarization multiplexed FWM in SOA[C]. 12th International Conference on Optical Communications and Networks, Chengdu, China, 2013.

[34] Qin J, Ji Y, Wang H, et al.. Multichannel wavelength multicasting for two QPSK signals based on FWM in SOA[J]. Chin Opt Lett, 2015, 13(1): 010601.

[35] Hsueh Y T, Jia Z, Chien H C, et al.. A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator[J]. IEEE Photonic Technol Lett, 2009, 21(18): 1338-1340.

[36] Kibria R, Austin M W. All optical signal-processing techniques utilizing four wave mixing[J]. Photonics, 2015, 2(1): 200-213.

[37] Okuno T, Hirano M, Kato T, et al.. Highly nonlinear and perfectly dispersion-flattened fiber for efficient optical signal processing applications[J]. Electron Lett, 2003, 39(13): 972-974.

[38] Wiberg A, Pérez-Millán P, Andrés M V, et al.. Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings[J]. J Lightwave Technol, 2006, 24(1): 329- 334.

[39] Galili M, Mulvad H C H, Grüner-Nielsen L, et al.. 640 Gbit/s optical wavelength conversion using FWM in a polarization maintaining HNLF[C]. 34th European Conference on Optical Communication, Brussels, Belgium, 2008: Tu.3.D.5.

[40] Wang D, Cheng T H, Yeo Y K, et al.. Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity[J]. J Lightwave Technol, 2010, 28(24): 3497-3505.

[41] Sharif G M, Nguyen-The Q, Matsuura M, et al.. All-optical pulse width-tunable wavelength conversion of return-to-zero differential phase-shift keying signal[J]. Opt Rev, 2015, 22(4): 553-559.

[42] Fernández-Ruiz M R, Lei L, Rochette M, et al.. All-optical wavelength conversion based on time-domain holography[J]. Opt Express, 2015, 23(17): 22847-22856.

[43] Yu J, Dong Z, Jian W, et al.. All-optical up-conversion 10-Gb/s signal in 60-GHz RoF system using 2-m bismuth oxide-based fiber[C]. Optical Fiber Communication Conference, Optical Society of America, San Diego, US, 2010: OThO6.

[44] 王天亮. 毫米波信号光纤传输关键技术的研究[D]. 北京: 清华大学, 2010: 31-60.

    Wang Tianliang. Studies on millimeter wave radio-over-fiber key technology[D]. Beijing: Tsinghua University, 2010: 31-60.

[45] Gao S, Xiao X. All-optical wavelength multicasting based on cascaded four wave mixing with a single pump in highly nonlinear fibers[J]. Opt Commun, 2012, 285(5): 784-789.

[46] Fukuda H, Yarnada K, Shoji T, et al.. Four-wave mixing in silicon wire waveguides[J]. Opt Express, 2005, 13(12): 4629-4637.

[47] Yamada K, Fukuda H, Tsuchizawa T, et al.. All-optical efficient wavelength conversion using silicon photonic wire waveguide[J]. IEEE Photonic Technol Lett, 2006, 18(9): 1046-1048.

[48] Rong H, Kuo Y H, Liu A, et al.. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides[J]. Opt Express, 2006, 14(3): 1182-1188.

[49] Ayotte S, Rong H, Xu S, et al.. Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator[J]. Opt Lett, 2007, 32(16): 2393-2395.

[50] Chen J, Gao S. Wavelength-assignable 1310/1550 nm wavelength conversion using completely phase-matched two-pump four-wave mixing in a silicon waveguide[J]. Opt Commun, 2015, 356: 389-394.

[51] Smecktala F, Brilland L, Charticr T, et al.. Recent advances in the development of holey optical fibers based on sulfide glasses[C]. SPIE, 2006, 6128: 61280M.

[52] Eggleton B, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nat Photon, 2011, 5(3): 141-148.

[53] 张振营, 陈芬, 聂秋华, 等. 硫系基质光波导的非线性应用研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120003.

    Zhang Zhenying, Chen Fen, Nie Qiuhua, et al.. Research progress on nonlinear application of chalcogenide optical waveguide[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120003.

[54] 汪翠, 戴世勋, 张培晴, 等. 基于硫系玻璃光纤的红外超连续谱的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030001.

    Wang Cui, Dai Shixun, Zhang Peiqing, et al.. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.

[55] Luan F, Pelusi M D, Lamont M R E, et al.. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals[J]. Opt Express, 2009, 17(5): 3514-3520.

[56] Pelusi M D, Luan F, Madden S, et al.. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip[J]. IEEE Photonic Technol Lett, 2010, 22(1): 3-5.

[57] 戴世勋, 於杏燕, 张巍, 等. 硫系玻璃光子晶体光纤研究进展[J]. 激光与光电子学进展, 2011, 48(9): 090602.

    Dai Shixun, Yu Xingyan, Zhang Wei, et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.

[58] Szpulak M, Février S. Chalcogenide As2S3suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing[J]. IEEE Photonic Technol Lett, 2009, 21(13): 884-886.

[59] Nguyen D M, Le S D, Lengle K, et al.. Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber[J]. IEEE Photonic Technol Lett, 2010, 22(24): 1844-1846.

[60] Bres C S, Zlatanovic S, Wiberg A O J, et al.. Demonstration of continuous-wave four-wave mixing in AsSe chalcogenide microstructured fiber[C]. 37th European Conference and Exposition on Optical Communications, Geneva, Switzerland, 2011.

刘丽, 徐铁峰, 戴振祥, 刘太君, 戴世勋, 王训四, 张秀普. 四波混频光生毫米波技术研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050001. Liu Li, Xu Tiefeng, Dai Zhenxiang, Liu Taijun, Dai Shixun, Wang Xunsi, Zhang Xiupu. Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!