激光与光电子学进展, 2016, 53 (5): 050001, 网络出版: 2016-05-05   

四波混频光生毫米波技术研究进展 下载: 1454次

Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing
作者单位
1 宁波大学信息科学与工程学院, 浙江 宁波 315211
2 宁波教育学院网络与教育技术中心, 浙江 宁波 315016
摘要
基于四波混频(FWM)效应的光生毫米波(MMW)技术因对信号频率、幅度和相位无限制且光转换效率高,已成为光生毫米波技术研究的一个重点方向。回顾了基于四波混频的光生毫米波技术的研究历程,讨论了目前基于半导体光放大器(SOA)、高非线性光纤(HNLF)和硅基波导等光学器件的四波混频效应生成毫米波的三种技术路线,综述了硫系玻璃光纤和硫系波导在光生毫米波领域的研究进展,并对光生毫米波技术的发展前景进行了展望。
Abstract
The technology of optical millimeter-wave (MMW) generation based on four-wave mixing (FWM) effect has become a key research direction due to its various advantages like having no limitation on the signal frequency, amplitude and phase, and high optical conversion efficiency. This paper reviews the research history of the photonic generation technology of MMW based on FWM effect. Three technical routes for the photonic generation of MMW based on FWM effect are discussed, which include the utilization of semiconductor optical amplifier (SOA), highly nonlinear optical fiber (HNLF) and silicon waveguide. Research progress on chalcogenide glass fibers and chalcogenide waveguides for the photonic generation of MMW is reviewed. The development prospect for the photonic generation technology of MMW is also presented.
参考文献

[1] 谢世钟, 陈明华, 陈宏伟. 微波光子学研究的进展[J]. 中兴通信技术, 2009, 15(3): 6-10.

    Xie Shizhong, Chen Minghua, Chen Hongwei. Advance in microwave photonics[J]. ZTE Technology Journal, 2009, 15(3): 6-10.

[2] Yao J. Microwave photonics[J]. J Lightwave Technol, 2009, 27(3): 314-335.

[3] Davies P A, Foord A P, Razavi K E. Millimeter-wave signal generation by optical filtering of frequency modulated laser spectra[J]. Electron Lett, 1995, 31(20): 1754-1756.

[4] Fukushima S, Silva F C C, Muramoto Y, et al.. Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers and a unitraveling-carrier photodiode[J]. J Lightwave Technol, 2003, 21(12): 3043-3051.

[5] O′Reilly J J, Lane P M, Heidemann R, et al.. Optical generation of very narrow linewidth millimeter wave signals[J]. Electron Lett, 1992, 28(25): 2309-2311.

[6] Yu J, Gu J, Liu X, et al.. Seamless integration of an 8×2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM[J]. IEEE Photonic Technol Lett, 2005, 17(9): 1986-1988.

[7] Smith G H, Novak D. Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects[J]. IEEE Photonic Technol Lett, 1998, 10(1): 141-143.

[8] Ma J, Yu J, Yu C, et al.. Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation[J]. Opt Commun, 2007, 280(2): 317-326.

[9] Qi G, Yao J P, Seregelyi J, et al.. Optical generation band distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J Lightwave Technol, 2005, 23(9): 2687-2695.

[10] Chen X, Deng Z, Yao J. Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 804-809.

[11] 沈一春. 受激布里渊散射在RoF系统中的应用研究[D]. 杭州: 浙江大学, 2005: 18-30.

    Shen Yichun. Study on applications of stimulated Brillouin scattering in RoF systems[D]. Hangzhou: Zhejiang University, 2005: 18-30.

[12] Galili M, Oxenlwe L K, Zibar D, et al.. 160 Gb/s Raman-assisted SPM wavelength converter[C]. 30th European Conference on Optical Communication, Stockholm, Sweden, 2004.

[13] Jia Z, Yu J, Chang J K. All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems[J]. IEEE Photonic Technol Lett, 2005, 17(12): 2724-2726.

[14] Leesti B, Zilkie A J, Aitchison J S, et al.. Broad-band wavelength up-conversion of picosecond pulses via four-wave mixing in a quantum-dash waveguide[J]. IEEE Photonic Technol Lett, 2005, 17(5): 1046-1048.

[15] Inoue K, Yoshino M. Noise suppression effect in cascaded wavelength conversion using light-injected DFB-LDs[J]. Electron Lett, 1996, 32(23): 2165-2166.

[16] Shen Y, Zhang X, Chen K. Optical single sideband modulation of 11-GHz ROF system using stimulated Brillouin scattering[J]. IEEE Photonic Technol Lett, 2005, 17(6): 1277-1279.

[17] Ma J, Yu J, Yu C, et al.. Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration[J]. J Lightwave Technol, 2006, 24(7): 2851-2858.

[18] Wang Q, Zeng F, Rideout H, et al.. Millimeter-wave generation based on four-wave mixing in an SOA[C]. International Topical Meeting on Microwave Photonics, Grenoble, France, 2006.

[19] Ma J, Yu J, Yu C, et al.. Reducing polarization sensitivity for all-optical wavelength conversion of the optical packets based on FWM in HNL-DSF using co-polarized pump scheme[J]. Opt Commun, 2006, 260(2): 522-527.

[20] Schneider T. Nonlinear optics in telecommunications[M]. New York: Springer-Verlag Berlin Heidelberg, 2004: 167-200.

[21] Agrawal G P. Nonlinear fiber optics (4th edition)[M]. Boston: Academic Press, 2007: 402-409.

[22] 迟楠, 齐江. SOA四波混频波长变换器的理论优化与实验研究[J]. 光电子·激光, 2000, 11(5): 457-460.

    Chi Nan, Qi Jiang. Theoretical optimization and experiment of SOA wavelength converter based on four-wave-mixing[J]. Journal of Optoelectronics·Laser, 2000, 11(5): 457-460.

[23] Seo J H, Choi C S, Kang Y S, et al.. SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 959-966.

[24] Kelly A E, Ellis A D, Nesset D, et al.. 100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier[J]. Electron Lett, 1998, 34(20): 1955-1956.

[25] D′Ottavi A, Spano P, Hunziker G, et al.. Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval[J]. IEEE Photonic Technol Lett, 1998, 10(7): 952-954.

[26] Wang Q, Rideout H, Zeng F, et al.. Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photonic Technol Lett, 2006, 18(23): 2460-2462.

[27] Kim H J, Song H J, Song J I. All-optical frequency up-conversion technique using four-wave mixing in semiconductor optical amplifiers for radio-over-fiber applications[C]. Proceedings of IEEE/MTT-S International Microwave Symposium, Honolulu, US, 2007: 67-70.

[28] Kim H J, Song J I. Simultaneous WDM RoF signal generation utilizing an all-optical frequency up-converter based on FWM in an SOA[J]. IEEE Photonic Technol Lett, 2011, 23(12): 828-830.

[29] Filion B, Ng W C, Nguyen A T, et al.. Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier[J]. Opt Express, 2013, 21(17): 19825-19833.

[30] Li M, Chen H, Yin F, et al.. Full-duplex 60-GHz RoF system with optical local oscillating carrier distribution scheme based on FWM effect in SOA[J]. IEEE Photonic Technol Lett, 2009, 21(22): 1716-1718.

[31] Lu J, Yu J J, Zhou H, et al.. Polarization insensitive wavelength conversion based on dual-pump four-wave mixing for polarization multiplexing signal in SOA[J]. Opt Commun, 2011, 284(22): 5364-5371.

[32] Xiao Y, Yu J. Novel 60 GHz RoF system with optical single sideband mm-wave signal generation and wavelength reuse for uplink connection[J]. Opt Commun, 2012, 285(3): 229-232.

[33] Xiang Y, Jiang N, Wang D, et al.. Multiple basestation RoF system enabled by multiple wavelength conversion based on polarization multiplexed FWM in SOA[C]. 12th International Conference on Optical Communications and Networks, Chengdu, China, 2013.

[34] Qin J, Ji Y, Wang H, et al.. Multichannel wavelength multicasting for two QPSK signals based on FWM in SOA[J]. Chin Opt Lett, 2015, 13(1): 010601.

[35] Hsueh Y T, Jia Z, Chien H C, et al.. A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator[J]. IEEE Photonic Technol Lett, 2009, 21(18): 1338-1340.

[36] Kibria R, Austin M W. All optical signal-processing techniques utilizing four wave mixing[J]. Photonics, 2015, 2(1): 200-213.

[37] Okuno T, Hirano M, Kato T, et al.. Highly nonlinear and perfectly dispersion-flattened fiber for efficient optical signal processing applications[J]. Electron Lett, 2003, 39(13): 972-974.

[38] Wiberg A, Pérez-Millán P, Andrés M V, et al.. Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings[J]. J Lightwave Technol, 2006, 24(1): 329- 334.

[39] Galili M, Mulvad H C H, Grüner-Nielsen L, et al.. 640 Gbit/s optical wavelength conversion using FWM in a polarization maintaining HNLF[C]. 34th European Conference on Optical Communication, Brussels, Belgium, 2008: Tu.3.D.5.

[40] Wang D, Cheng T H, Yeo Y K, et al.. Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity[J]. J Lightwave Technol, 2010, 28(24): 3497-3505.

[41] Sharif G M, Nguyen-The Q, Matsuura M, et al.. All-optical pulse width-tunable wavelength conversion of return-to-zero differential phase-shift keying signal[J]. Opt Rev, 2015, 22(4): 553-559.

[42] Fernández-Ruiz M R, Lei L, Rochette M, et al.. All-optical wavelength conversion based on time-domain holography[J]. Opt Express, 2015, 23(17): 22847-22856.

[43] Yu J, Dong Z, Jian W, et al.. All-optical up-conversion 10-Gb/s signal in 60-GHz RoF system using 2-m bismuth oxide-based fiber[C]. Optical Fiber Communication Conference, Optical Society of America, San Diego, US, 2010: OThO6.

[44] 王天亮. 毫米波信号光纤传输关键技术的研究[D]. 北京: 清华大学, 2010: 31-60.

    Wang Tianliang. Studies on millimeter wave radio-over-fiber key technology[D]. Beijing: Tsinghua University, 2010: 31-60.

[45] Gao S, Xiao X. All-optical wavelength multicasting based on cascaded four wave mixing with a single pump in highly nonlinear fibers[J]. Opt Commun, 2012, 285(5): 784-789.

[46] Fukuda H, Yarnada K, Shoji T, et al.. Four-wave mixing in silicon wire waveguides[J]. Opt Express, 2005, 13(12): 4629-4637.

[47] Yamada K, Fukuda H, Tsuchizawa T, et al.. All-optical efficient wavelength conversion using silicon photonic wire waveguide[J]. IEEE Photonic Technol Lett, 2006, 18(9): 1046-1048.

[48] Rong H, Kuo Y H, Liu A, et al.. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides[J]. Opt Express, 2006, 14(3): 1182-1188.

[49] Ayotte S, Rong H, Xu S, et al.. Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator[J]. Opt Lett, 2007, 32(16): 2393-2395.

[50] Chen J, Gao S. Wavelength-assignable 1310/1550 nm wavelength conversion using completely phase-matched two-pump four-wave mixing in a silicon waveguide[J]. Opt Commun, 2015, 356: 389-394.

[51] Smecktala F, Brilland L, Charticr T, et al.. Recent advances in the development of holey optical fibers based on sulfide glasses[C]. SPIE, 2006, 6128: 61280M.

[52] Eggleton B, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nat Photon, 2011, 5(3): 141-148.

[53] 张振营, 陈芬, 聂秋华, 等. 硫系基质光波导的非线性应用研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120003.

    Zhang Zhenying, Chen Fen, Nie Qiuhua, et al.. Research progress on nonlinear application of chalcogenide optical waveguide[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120003.

[54] 汪翠, 戴世勋, 张培晴, 等. 基于硫系玻璃光纤的红外超连续谱的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030001.

    Wang Cui, Dai Shixun, Zhang Peiqing, et al.. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.

[55] Luan F, Pelusi M D, Lamont M R E, et al.. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals[J]. Opt Express, 2009, 17(5): 3514-3520.

[56] Pelusi M D, Luan F, Madden S, et al.. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip[J]. IEEE Photonic Technol Lett, 2010, 22(1): 3-5.

[57] 戴世勋, 於杏燕, 张巍, 等. 硫系玻璃光子晶体光纤研究进展[J]. 激光与光电子学进展, 2011, 48(9): 090602.

    Dai Shixun, Yu Xingyan, Zhang Wei, et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.

[58] Szpulak M, Février S. Chalcogenide As2S3suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing[J]. IEEE Photonic Technol Lett, 2009, 21(13): 884-886.

[59] Nguyen D M, Le S D, Lengle K, et al.. Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber[J]. IEEE Photonic Technol Lett, 2010, 22(24): 1844-1846.

[60] Bres C S, Zlatanovic S, Wiberg A O J, et al.. Demonstration of continuous-wave four-wave mixing in AsSe chalcogenide microstructured fiber[C]. 37th European Conference and Exposition on Optical Communications, Geneva, Switzerland, 2011.

刘丽, 徐铁峰, 戴振祥, 刘太君, 戴世勋, 王训四, 张秀普. 四波混频光生毫米波技术研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050001. Liu Li, Xu Tiefeng, Dai Zhenxiang, Liu Taijun, Dai Shixun, Wang Xunsi, Zhang Xiupu. Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!