液晶与显示, 2018, 33 (2): 116, 网络出版: 2018-03-21   

液晶及其不同填充结构对光子晶体光纤传输特性的影响

Effect of liquid crystal and its different filling structure on the transmission properties of photonic crystal fiber
作者单位
1 哈尔滨工程大学 纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001
2 哈尔滨工业大学 物理系, 黑龙江 哈尔滨 150001
摘要
本文研究了各向异性材料对光子晶体光纤光传输特性的影响。由于靠近纤芯的空气孔对光子晶体光纤的影响最大, 所以本文分别对靠近纤芯的2个空气孔、3个空气孔和6个空气孔进行填充。对填充各向异性材料的光子晶体光纤的色散、限制损耗和有效模场面积进行了模拟, 并对其传输特性进行了详细的分析和讨论。同时进行了各向异性液晶材料填充光子晶体光纤的实验研究。结果表明在通讯波段, 填充液晶的光子晶体光纤与相应的有效折射率仿真结果基本一致。该填充光子晶体光纤有较低的限制损耗, 在1 550 nm 达到10-9。较小的有效模场面积和明显的色散零点, 因而它在通讯领域有较高的潜力和应用。
Abstract
This paper studies the effect of anisotropic materials on transmission characteristics for photonic crystal fiber. The influence of the air holes near the core on the photonic crystal fiber are most, so the air holes near the fiber core are respectively proceeding two holes, three holes and six holes filling. The dispersion, confinement loss and effective mode field area of photonic crystal fibers filled with anisotropic materials were simulated, and its transmission characteristics were analyzed and discussed in detail. At the same time, the experimental study of the filled photonic crystal fiber with anisotropic liquid crystal materials was carried out. The results show that, in the telecom band, the experimental results of the filled liquid crystal photonic crystal fiber are basically consistent with simulation results of corresponding effective refractive index. The filled photonic crystal fiber has lower confinement loss, it is 10-9 at 1 550 nm, smaller effective mode field area and obvious zero dispersion, so it has a higher potential and application in the fields of communication.
参考文献

[1] HSU J M, HORNG J S, HSU C L,et al. Fiber-optic Michelson interferometer with high sensitivity based on a liquid-filled photonic crystal fiber[J]. Optics Communications, 2014, 331: 348-352.

[2] 马依拉木·木斯得克, 姚建铨, 陆颖, 等.1.55μm高非线性高双折射光子晶体光纤[J].光学 精密工程, 2014, 22(3):588-596.

    MAYILAMU M S D K, YAO J Q, LU Y, et al. Highly nonlinear and birefringent photonic crystal fiber at 1.55μm [J]. Optics and Precision Engineering, 2014, 22(3): 588-596. (in Chinese)

[3] 王家璐, 杜木清, 张伶莉, 等.基于不同液晶填充光子晶体光纤传输特性的研究[J].物理学报, 2015, 64(12):120702.

    WANG J L, DU M Q, ZHANG L L,et al. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals [J]. Acta Physica Sinica, 2015, 64(12): 120702. (in Chinese)

[4] QIAN W W, ZHAO C L, WANG Y P,et al. Partially liquid-filled hollow-core photonic crystal fiber polarizer [J]. Optics Letters, 2011, 36(16): 3296-3298.

[5] LIN W, SONG B B, MIAO Y P,et al. Liquid-filled photonic-crystal-fiber-based multimodal interferometer for simultaneous measurement of temperature and force [J]. Applied Optic, 2015, 54(6): 1309-1313.

[6] CUBILLAS A M, UNTERKOFLER S, EUSER T G, et al. Photonic crystal fibres for chemical sensing and photochemistry [J]. Chemical Society Reviews, 2013, 42(22): 8629-8648.

[7] ZHAO Y, CAI L, LI X G. High sensitive modal interferometer for temperature and refractive index measurement [J]. IEEE Photonics Technology Letters, 2015, 27(12): 1341-1344.

[8] LIU C, WANG F M, LV J W,et al. A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance [J]. Optics Communications, 2016, 359: 378-382.

[9] XIAO L M, JIN W,DEMOKAN M S. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs [J]. Optics Express, 2007, 15(24): 15637-15647.

[10] BENNET F H, MOLINA M I. Nonlinear light localization around the core of a holey fiber [J]. Journal of the Optical Society of America B, 2012, 29(8): 2161-2165.

[11] HAN T T, LIUY G, WANG Z, et al. Control and design of fiber birefringence characteristics based on selective-filled hybrid photonic crystal fibers [J]. Optics Express, 2014, 22(12): 15002-15016.

[12] SAITOH K, KOSHIBA M. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers [J]. Optics Express, 2003, 11(23): 3100-3109.

[13] YIN A H, XIONG L. Novel single-mode and polarization maintaining photonic crystal fiber[J]. Infrared Physics & Technology, 2014, 67: 148-154.

[14] HUSSEIN R A, HAMEED M F O, OBAYYA S S A. Ultrahigh soliton pulse compression through liquid crystal photonic crystal fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 4900908.

[15] 张智勇, 刘可庆, 戴志群, 等.高双折射液晶化合物的研究进展[J].液晶与显示, 2014, 29(6):873-880.

    ZHANGZ Y, LIU K Q, DAI Z Q, et al. Research progress of high birefringence liquid crystal compounds [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(6): 873-880. (in Chinese)

[16] LIU X Q, LIU Y J, SUN W M,et al. The propagation characters of two-core selective filling photonic liquid crystal fibres [J]. Liquid Crystals, 2013, 40(2): 249-255.

[17] LIU X Q, LIU Y J, SUN W M, et al. The propagation characters of selective-filled photonic crystal fibres [J]. Liquid Crystals, 2013, 40(5): 565-569.

杜木青, 张伶莉, 刘永军. 液晶及其不同填充结构对光子晶体光纤传输特性的影响[J]. 液晶与显示, 2018, 33(2): 116. DU Mu-qing, ZHANG Ling-li, LIU Yong-jun. Effect of liquid crystal and its different filling structure on the transmission properties of photonic crystal fiber[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(2): 116.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!