电光与控制, 2017, 24 (10): 1, 网络出版: 2021-01-22  

基于频域显著性分析的红外小目标检测算法

Small Infrared Target Detection Algorithm Based on Frequency Domain Saliency Analysis
作者单位
1 南京航空航天大学,南京 211106
2 光电控制技术重点实验室,河南洛阳471023
摘要
针对复杂背景下的红外小目标检测问题,提出一种基于频域显著性分析的小目标检测算法。算法利用红外图像中目标在频域内相较于背景更加显著的特点,通过频域显著性计算得到红外图像的显著图,消除部分背景杂波干扰,然后通过自适应阈值分割显著图,提取出感兴趣区域,进一步在感兴趣区域中计算多尺度窗口的显著度,从而完成小目标的检测。从理论上分析了算法的有效性,并利用典型的红外图像进行了实验,实验结果表明,所提算法能够很好地完成低信噪比条件下的红外小目标检测。与其他方法相比,在保证目标检测准确率的前提下,所提算法简单有效、复杂度低、计算效率高,满足实时性要求。
Abstract
To solve the problem of small infrared target detection under complex backgrounds, an effective algorithm based on saliency analysis in frequency domain is proposed. The infrared target is usually more significant than backgrounds in spectral domain. Thus, we can obtain the saliency map of the infrared image through some operations in frequency domain. In this way, target signal is enhanced and background clutter is suppressed. Then, an adaptive threshold is adopted to segment the saliency map and extract the region of interest. At last, the saliency of windows in the region of interest is measured to predict the exact position of the small targets. Theoretical analysis was made to the effectiveness of the algorithm. And to validate our algorithm, we conducted experiments on some typical infrared images that contain small targets. Experimental evaluation results show that our method can implement infrared small target detection under low signal-to-noise ratio fairly well, and the method is simple, effective, and can satisfy the real-time requirement while guaranteeing the detection accuracy.
参考文献

[1] 朱明旱, 罗大庸, 曹倩霞. 帧间差分与背景差分相融合的运动目标检测算法[J]. 计算机测量与控制, 2005, 13(3): 215-217.

[2] NGUYEN D T, LI W, OGUNBONA P O. Human detection from images and videos: a survey[J]. Pattern Recognition, 2016, 51(1): 148-175.

[3] HAN J, ZHANG D, CHENG G, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning[J]. IEEE Tran-sactions on Geoscience & Remote Sensing, 2015, 53(6): 3325-3337.

[4] AGARWAL S, AWAN A, ROTH D. Learning to detect objects in images via a sparse, part-based representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2004, 26(11): 1475-1490.

[5] ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deep learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1265-1274.

[6] WANG Y L, DAI J M, SUN X G, et al. An efficient me-thod of small targets detection in low SNR[C]//Journal of Physics: Conference Series, 2006, 48(1): 427.

[7] DESHPANDE S D, MENG H E, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[C]//SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, Inter-national Society for Optics and Photonics, 1999: 74-83.

[8] ASIF M, NASRABADI N M. Kernel wavelet-Reed-Xiaoli: an anomaly detection for forward-looking infrared imagery[J]. Applied Optics, 2011, 50(17): 2744-2751.

[9] SUN S G, KWAK D M, JANG W B, et al. Small target detection using center-surround difference with locally adaptive threshold[C]//Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, IEEE, 2005: 402-407.

[10] ZHAO J, CHEN J, CHEN Y, et al. Sparse-representation-based automatic target detection ininfrared imagery[J]. Infrared Physics & Technology, 2013, 56(1): 85-92.

[11] CHEN C L P, LI H, WEI Y, et al. A local contrast me-thod for small infrared target detection[J]. IEEE Tran-sactions on Geoscience & Remote Sensing, 2014, 52(1): 574-581.

[12] FELZENSZWALB P F, GIRSHICK R B, DAVID M A, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(9): 1627-1645.

[13] LI H, WEI Y, LI L, et al. Infrared moving target detection and tracking based on tensor locality preserving projection[J]. Infrared Physics & Technology, 2010, 53(2): 77-83.

[14] SHAO Z, LI D, ZHU X. Adaptive target detection based on improved genetic algorithm in infrared images[J]. Geomatics & Information Science of Wuhan University, 2011, 36(5): 535-539.

[15] BORJI A, CHENG M M, JIANG H, et al. Salient object detection: a benchmark[J]. IEEE Transactions on Ima-ge Processing, 2015, 24(12): 5706-5722.

[16] HOU X, HAREL J, KOCH C. Image signature: highlighting sparse salient regions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 194-201.

[17] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//International Conference on Pattern Recognition, IEEE, 2006: 850-855.

孙泽军, 丁萌, 王洁, 王跃东. 基于频域显著性分析的红外小目标检测算法[J]. 电光与控制, 2017, 24(10): 1. SUN Ze-jun, DING Meng, WANG Jie, WANG Yue-dong. Small Infrared Target Detection Algorithm Based on Frequency Domain Saliency Analysis[J]. Electronics Optics & Control, 2017, 24(10): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!