中国激光, 2020, 47 (5): 0500006, 网络出版: 2020-05-12   

复杂涡旋结构光场的产生方法 下载: 2727次特邀综述

Generation Methods for Complex Vortex Structured Light Field
柳强 1,2,*潘婧 1,2万震松 1,2申艺杰 1,2张恒康 1,2付星 1,2巩马理 1,2
作者单位
1 清华大学精密仪器系, 北京100084
2 光子测控技术教育部重点实验室, 北京100084
引用该论文

柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理. 复杂涡旋结构光场的产生方法[J]. 中国激光, 2020, 47(5): 0500006.

Qiang Liu, Jing Pan, Zhensong Wan, Yijie Shen, Hengkang Zhang, Xing Fu, Mali Gong. Generation Methods for Complex Vortex Structured Light Field[J]. Chinese Journal of Lasers, 2020, 47(5): 0500006.

参考文献

[1] Coullet P, Gil L, Rocca F. Optical vortices[J]. Optics Communications, 1989, 73(5): 403-408.

[2] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[3] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

[4] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

[5] Lafong A, Hossack W J, Arlt J, et al. Time-multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications[J]. Optics Express, 2006, 14(7): 3065-3072.

[6] Chen Z Z, Zeng T T, Qian B J, et al. Complete shaping of optical vector beams[J]. Optics Express, 2015, 23(14): 17701-17710.

[7] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Express, 2004, 12(6): 1144-1149.

[8] Abramochkin E, Alieva T. Closed-form expression for mutual intensity evolution of Hermite-Laguerre-Gaussian Schell-model beams[J]. Optics Letters, 2017, 42(19): 4032-4035.

[9] Wang Y, Chen Y J, Zhang Y F, et al. Generalised Hermite-Gaussian beams and mode transformations[J]. Journal of Optics, 2016, 18(5): 055001.

[10] Bandres M A. Gutiérrez-Vega J C. Ince-Gaussian modes of the paraxial wave equation and stable resonators[J]. Journal of the Optical Society of America A, 2004, 21(5): 873-880.

[11] Woerdemann M, Alpmann C, Denz C. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams[J]. Applied Physics Letters, 2011, 98(11): 111101.

[12] Tuan P H, Liang H C, Huang K F, et al. Realizing high-pulse-energy large-angular-momentum beams by astigmatic transformation of geometric modes in an Nd∶YAG/Cr 4+∶YAG laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-9.

[13] Chen Y F, Tung J C, Tuan P H, et al. Symmetry breaking induced geometric surfaces with topological curves in quantum and classical dynamics of the SU(2) coupled oscillators[J]. Annalen Der Physik, 2017, 529(10): 1600253.

[14] Götte J B. O'Holleran K, Preece D, et al. Light beams with fractional orbital angular momentum and their vortex structure[J]. Optics Express, 2008, 16(2): 993-1006.

[15] Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6: 71.

[16] Nasalski W. Vortex and anti-vortex compositions of exact elegant Laguerre-Gaussian vector beams[J]. Applied Physics B, 2014, 115(2): 155-159.

[17] Milione G, Evans S, Nolan D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of light[J]. Physical Review Letters, 2012, 108(19): 190401.

[18] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[19] Zhang L G, Shen B F, Zhang X M, et al. Deflection of a reflected intense vortex laser beam[J]. Physical Review Letters, 2016, 117(11): 113904.

[20] Mourka A, Baumgartl J, Shanor C, et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture[J]. Optics Express, 2011, 19(7): 5760-5771.

[21] Hickmann J M. Fonseca E J S, Soares W C, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum[J]. Physical Review Letters, 2010, 105(5): 053904.

[22] Pattanayak AK, MajiS, Brundavanam MM. Polarization singularities due to unfolding of fractional vortex beams in a birefringent crystal[C]∥Frontiers in Optics 2017. Washington, D.C.: OSA, 2017: 91.

[23] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

[24] Miao P, Zhang ZF, Sun J B, et al. Orbital angular momentum microlaser[J]. Science, 2016, 353(6298): 464-467.

[25] Zhang W D, Wei K Y, Huang L G, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating[J]. Optics Express, 2016, 24(17): 19278-19285.

[26] Laabs H, Ozygus B. Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping[J]. Optics & Laser Technology, 1996, 28(3): 213-214.

[27] Chen Y F, Huang T M, Kao C F, et al. Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(6): 1025-1031.

[28] Shen Y J, Meng Y, Fu X, et al. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb∶CALGO laser[J]. Optics Letters, 2018, 43(2): 291-294.

[29] Beijersbergen M W. Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/2/3): 123-132.

[30] Chen Y F, Chang C C, Lee C Y, et al. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite-Gaussian beams[J]. Laser Physics, 2018, 28(1): 015002.

[31] Habraken S J M, Gerard N. Orbital angular momentum in twisted and rotating cavity modes[J]. Proceedings of SPIE, 2008, 6905: 690504.

[32] Habraken S J M, Nienhuis G. Rotational stabilization and destabilization of an optical cavity[J]. Physical Review A, 2009, 79: 011805.

[33] Huang X X, Xu B, Cui S W, et al. Direct generation of vortex laser by rotating induced off-axis pumping[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-6.

[34] Tuan P H, Hsieh Y H, Tu C W, et al. Generating high-order transverse patterns in optically pumped semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.

[35] Chen Y F, Lu T H, Su K W, et al. Devil's staircase in three-dimensional coherent waves localized on lissajous parametric surfaces[J]. Physical Review Letters, 2006, 96(21): 213902.

[36] Lu T H, Lin Y C, Chen Y F, et al. Three-dimensional coherent optical waves localized on trochoidal parametric surfaces[J]. Physical Review Letters, 2008, 101(23): 233901.

[37] Erhard J, Laabs H, Bernd O, et al. Diode-pumped multipath laser oscillators[J]. Proceedings of SPIE, 1999, 3611: 2-10.

[38] Dingjan J, van Exter M P, Woerdman J P. Geometric modes in a single-frequency Nd∶YVO4 laser[J]. Optics Communications, 2001, 188(5/6): 345-351.

[39] Lu T H, Lin Y C, Chen Y F, et al. Generation of multi-axis Laguerre-Gaussian beams from geometric modes of a hemiconfocal cavity[J]. Applied Physics B, 2011, 103(4): 991-999.

[40] Chen Y F, Tung J C, Chiang P Y, et al. Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping[J]. Physical Review A, 2013, 88: 013827.

[41] Shen Y J, Yang X L, Fu X, et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator[J]. Applied Optics, 2018, 57(32): 9543-9549.

[42] Chen YF, Tuan PH, Cho CY, et al. Exploring vortex structures of circularly geometric beams from off-axis pumped solid-state lasers with an external mode converter[C]∥Lasers Congress 2016 (ASSL, LSC, LAC), Boston, Massachusetts. Washington, D.C.: OSA, 2016: JTh2A. 14.

[43] Shen YJ, Wan ZS, MengY, et al. Generation of polygonal vortex beams in quasi-frequency- degenerate states of Yb: CALGO laser[C]∥Laser Congress 2018 (ASSL), Boston, Massachusetts. Washington, D.C.: OSA, 2018: AW2A. 3.

[44] Chen Y F, Lan Y P. Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking[J]. Physical Review A, 2001, 64(6): 063807.

[45] Shen Y J, Wan Z S, Fu X, et al. Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser[J]. Journal of the Optical Society of America B, 2018, 35(12): 2940-2944.

[46] Niziev V G, Chang R S, Nesterov A V. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Applied Optics, 2006, 45(33): 8393-8399.

[47] Lin YY, Yeh CC. Optical vortex beam conversion based on resonator with an intra-cavity spiral phase plate[C]∥2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August 4, 2017. New York: IEEE, 2017: s1641.

[48] Oron R, Danziger Y, Davidson N, et al. Laser mode discrimination with intra-cavity spiral phase elements[J]. Optics Communications, 1999, 169(1/2/3/4/5/6): 115-121.

[49] Kim D J, Kim J W. High-power TEM00 and Laguerre-Gaussian mode generation in double resonator configuration[J]. Applied Physics B, 2015, 121(3): 401-405.

[50] Kim D J. MacKenzie J I, Kim J W. Adaptable beam profiles from a dual-cavity Nd∶YAG laser[J]. Optics Letters, 2016, 41(8): 1740-1743.

[51] Marrucci L. The q-plate and its future[J]. Journal of Nanophotonics, 2013, 7(1): 078598.

[52] Konforti N, Marom E, Wu S T. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators[J]. Optics Letters, 1988, 13(3): 251-253.

[53] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327-332.

[54] Litvin I A, Ngcobo S, Naidoo D, et al. Doughnut laser beam as an incoherent superposition of two petal beams[J]. Optics Letters, 2014, 39(3): 704-707.

[55] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nature Communications, 2013, 4: 2289.

[56] Liu S S, Chen X D, Pu J X, et al. A V-folded digital laser for on-demand vortex beams by astigmatic transformation of hermite-Gaussian modes[J]. Chinese Physics Letters, 2019, 36(12): 124203.

[57] Sato T, Kozawa Y, Sato S. Transverse-mode selective laser operation by unicursal fast-scanning pumping[J]. Optics Letters, 2015, 40(14): 3245-3248.

[58] Litvin I A, King G, Strauss H. Beam shaping laser with controllable gain[J]. Applied Physics B, 2017, 123(6): 174.

[59] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror[J]. Journal of the Optical Society of America A, 2010, 27(9): 2072-2077.

[60] SchepersF, BexterT, HellwigT, et al. Cavity-external spatial gain shaping for selective higher-order mode excitation[C]∥Conference on Lasers and Electro-Optics, San Jose, California. Washington, D.C.: OSA, 2019: JTu2A. 61.

[61] Chen D M, Miao Y J, Fu H, et al. High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency[J]. APL Photonics, 2019, 4(10): 106106.

[62] Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses[J]. Optics Express, 2004, 12(15): 3548-3553.

[63] Lee W M, Yuan X C, Cheong W C. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation[J]. Optics Letters, 2004, 29(15): 1796-1798.

[64] Kotlyar V V, Elfstrom H, Turunen J, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861.

[65] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

[66] Karimi E, Piccirillo B, Marrucci L, et al. Light propagation in a birefringent plate with topological charge[J]. Optics Letters, 2009, 34(8): 1225-1227.

[67] Piccirillo B. D'Ambrosio V, Slussarenko S, et al. Photon spin-to-orbital angular momentum conversion via an electrically tunableq-plate[J]. Applied Physics Letters, 2010, 97(24): 241104.

[68] Miyamoto K, Suizu K, Akiba T, et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate[J]. Applied Physics Letters, 2014, 104(26): 261104.

[69] Peele A G. McMahon P J, Paterson D, et al. Observation of an X-ray vortex[J]. Optics Letters, 2002, 27(20): 1752-1754.

[70] Moh K J, Yuan X C, Cheong W C, et al. High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate[J]. Applied Optics, 2006, 45(6): 1153-1161.

[71] Nivas J J J, He S T, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate[J]. Scientific Reports, 2015, 5: 17929.

[72] Hsueh C K, Sawchuk A A. Computer-generated double-phase holograms[J]. Applied Optics, 1978, 17(24): 3874-3883.

[73] Arrizón V. Sánchez-De-la-llave D. Double-phase holograms implemented with phase-only spatial light modulators: performance evaluation and improvement[J]. Applied Optics, 2002, 41(17): 3436-3447.

[74] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

[75] Litvin I A, Dudley A, Roux F S, et al. Azimuthal decomposition with digital holograms[J]. Optics Express, 2012, 20(10): 10996-11004.

[76] Bentley J B, Davis J A, Bandres M A, et al. Generation of helical Ince-Gaussian beams with a liquid-crystal display[J]. Optics Letters, 2006, 31(5): 649-651.

[77] Mendoza-Yero O, Mínguez-Vega G, Lancis J. Encoding complex fields by using a phase-only optical element[J]. Optics Letters, 2014, 39(7): 1740-1743.

[78] Arrizón V, Ruiz U, Carrada R, et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields[J]. Journal of the Optical Society of America A, 2007, 24(11): 3500-3507.

[79] Forbes A, Dudley A. McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 2016, 8(2): 200-227.

[80] Rosales-Guzmán C, Bhebhe N, Mahonisi N, et al. Multiplexing 200 spatial modes with a single hologram[J]. Journal of Optics, 2017, 19(11): 113501.

[81] López-Mariscal C, Helmerson K. Shaped nondiffracting beams[J]. Optics Letters, 2010, 35(8): 1215-1217.

[82] Ma H X, Li X Z, Tai Y P, et al. Generation of circular optical vortex array[J]. Annalen Der Physik, 2017, 529(12): 1700285.

[83] Wan Z S, Shen Y J, Gong M L, et al. Quadrant-separable multi-singularity vortices manipulation by coherent superposed mode with spatial-energy mismatch[J]. Optics Express, 2018, 26(26): 34940-34955.

[84] O'NEIL A T. COURTIAL J. Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter[J]. Optics communications, 2000, 181(1/2/3): 35-45.

[85] Chu S C, Yang C S, Otsuka K. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer[J]. Optics Express, 2008, 16(24): 19934-19949.

[86] Vyas S, Kozawa Y, Sato S. Polarization singularities in superposition of vector beams[J]. Optics Express, 2013, 21(7): 8972-8986.

[87] Liu S, Qi S X, Zhang Y, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 2018, 6(4): 228-233.

[88] Lu T H, Huang T D, Wang J G, et al. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator[J]. Scientific Reports, 2016, 6: 39657.

[89] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 2017, 25(21): 25697-25706.

[90] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 2014, 8(12): 889-898.

[91] Liu Z T, Meng Y, Hu F T, et al. Largely tunable terahertz circular polarization splitters based on patterned graphene nanoantenna arrays[J]. IEEE Photonics Journal, 2019, 11(5): 1-11.

[92] Meng Y, Hu F T, Liu Z T, et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization[J]. Optics Express, 2019, 27(12): 16425-16439.

[93] Li G X, Kang M, Chen S M, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light[J]. Nano Letters, 2013, 13(9): 4148-4151.

[94] Karimi E. Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

[95] Ma X L, Pu M B, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.

[96] Yang K P, Pu M B, Li X, et al. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface[J]. Nanoscale, 2016, 8(24): 12267-12271.

[97] Devlin R C, Ambrosio A, Wintz D, et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces[J]. Optics Express, 2017, 25(1): 377-393.

[98] Li Y, Li X, Chen L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502.

[99] Yue F Y, Wen D D, Zhang C M, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Advanced Materials, 2017, 29(15): 1603838.

[100] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901.

[101] Molesky S, Lin Z, Piggott A Y, et al. Inverse design in nanophotonics[J]. Nature Photonics, 2018, 12(11): 659-670.

[102] Xie Z W, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light: Science & Applications, 2018, 7(4): 18001.

柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理. 复杂涡旋结构光场的产生方法[J]. 中国激光, 2020, 47(5): 0500006. Qiang Liu, Jing Pan, Zhensong Wan, Yijie Shen, Hengkang Zhang, Xing Fu, Mali Gong. Generation Methods for Complex Vortex Structured Light Field[J]. Chinese Journal of Lasers, 2020, 47(5): 0500006.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!