光子学报, 2018, 47 (11): 1123003, 网络出版: 2018-12-17   

基于MIM谐振腔内嵌金属方芯结构的可调谐Fano共振

Tunable Fano Resonance Based on Metal Square Core Structure Embedded in MIM Resonator
作者单位
1 中北大学 a 仪器与电子学院
2 中北大学 b 信息与通信工程学院
3 中北大学 c 电气与控制工程学院, 太原 030051
摘要
设计了一种由内嵌金属方芯的金属-绝缘体-金属方形气腔以及两个侧耦合波导组成的耦合结构, 并采用有限元方法研究了该结构的传播特性.结果表明: 通过对气腔内金属方芯偏离角和偏离距离的调节可以获得并调制Fano共振; 该Fano共振由对称破缺或几何效应影响左右波导和谐振腔之间耦合区域中的场分布强度所致, 场分布模式的变化是由波导模和腔模之间的干涉引起的.此外, Fano共振的光谱位置和调制深度对偏差参数十分敏感, 通过计算不同偏差角及偏差距离下的折射率传感特性发现, 其折射率敏感度最高达1 508 nm/RIU, 品质因数最高达1 308.研究结果为设计更加灵活、简单、高效的片上等离子体纳米传感器提供了理论依据.
Abstract
A coupling structure which consists of a metal-insulator-metal resonator centered off from the metal square core and two side-coupled waveguides is designed. The propagation characteristics of the structure are studied by finite element method. The results show that the Fano resonance can be obtained and modulated by adjusting the deviation angle and deviation distance of the metal core in the cavity. The Fano resonance is caused by the symmetry breaking or geometric effect, which affects the intensity of the field distribution in the coupling region between the left and right waveguides and the cavity. The variation of field distribution mode is caused by the interference between the waveguide mode and the cavity mode. In addition, the spectral position and modulation depth of Fano resonance are very sensitive to the deviation parameters. By calculating the refractive index sensing characteristics under different deviation angles and deviation distances, the refractive index sensitivity is up to 1 508 nm/RIU, and the quality factor is up to 1 308. The research results provide a theoretical basis for designing more flexible, simple and efficient on-chip plasmonic nanosensors.
参考文献

[1] BAMES W L, DEREUX A, EBBESEN T W . Surface plasmom subwavelength optics[J]. Nature, 2003, 424: 824-830.

[2] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408: 131-314.

[3] GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[4] ZAFAR R, SALIM M. Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide[J]. IEEE Journal Quantum Electron, 2015, 51: 7200306.

[5] SINGH L, SHAMA T, KUMAR M.Controlled hybridization of plasmonic and optical modes for low-loss nano-scale optical confinement with ultralow dispersion[J]. IEEE Journal of Quantum Electronics, 2018, 54(2): 7200105.

[6] ZHANG Z D, WANG H Y, ZHANG Z Y. Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide[J]. Plasmonics, 2012, 8: 797-801.

[7] 蒋亚兰, 王继成, 王跃科,等. 一种带有支节的MIM型表面等离子体T型分束器[J]. 光子学报, 2014, 43(9): 0923002.

    JIANG Ya-lan, WANG Ji-cheng, WANG Yue-ke, et al. A MIM surface plamsom T-splitter based on a stub structure[J]. Acta Photonica Sinica, 2014, 43(9): 0923002.

[8] YANG Song-lin, YU Da-ming, LIU Gui-dong, et al. Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system[J]. Plasmonics, 2017, 5758: 1015-1020.

[9] DONG Li-rong, XU Xue-mei, LI Chen-jing, et al. Plasmon-induced transparency in sensing application with semicircle cavity waveguide[J]. Optics Communications, 2018, 410: 751-755.

[10] ZHAO Shu-ming, ZHANG Hao-chi, ZHAO Jia-hao, et al. An ultra-compact rejection filter based on spoof surface plasmon polaritons[J]. Scientific Reports, 2017, 7(1): 10576.

[11] 吴德昌, 杨树.等离子体诱导透明的T形-圆形波导滤波器[J].发光学报,2016,37(10): 1287-1291.

    WU De-chang, YANG Shu. Double-sided T-shaped-disk waveguide filters based on plasmon-induced transparency[J].Chinese Journal of Luminescence,2016, 37(10): 1287-1291.

[12] DAGHESTANI H N, DAY B W. Theory and applications of surface plasmon resonance resonant mirror resonant waveguide grating and dual polarization interferometry biosensors[J]. Sensors, 2010, 10: 9630-9646.

[13] BELUSHKIN A, YESILKOY F, ALTUG H. Nanoparticle enhanced plasmonic biosensor for digital biomarker detection in a microarray[J]. Acs Nano, 2018, 12(5): 4453-4461.

[14] NEIRA A D, WURTZ G A, ZAYATS A V. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity[J]. Photonics Research, 2018, 6(5): B1.

[15] RANA G, DESHMUKH P, PALKHIVALA S, et al. Quadrupole-quadrupole interactions to control plasmon-induced transparency[J]. Physical Review Applied, 2018, 9(6): 064015.

[16] CIRELLI C, MARANTE C, HEUSER S, et al. Anisotropic photoemission time delays close to a Fano resonance[J]. Nature Communications, 2018, 9(1): 29511164.

[17] YU S, PIAO X, HONG J, et al. Progress toward high-Q perfect absorption: a Fano antilaser[J]. Physical Review A, 2015, 92(1): 011802.

[18] 娄小伟, 崔锦江, 董宁宁,等. 基于眼型谐振腔的Fano谐振曲线尖锐度的分析[J]. 光子学报, 2015, 44(1): 0113002.

    LOU Xiao-wei, CUI Jin-jiang, DONG Ning-ning, et al. Analysis of sharpness Fano resonance line based on eye-like resonator[J]. Acta Photonica Sinica, 2015, 44(1): 0113002.

[19] 陈慧斌, 张志东, 闫树斌, 等. 基于半圆形与矩形谐振腔耦合结构的Fano共振[J]. 光子学报, 2016, 45(8): 0823002.

    CHEN Hui-bin, ZHANG Zhi-dong, YAN Shu-bin, et al. Fano resonance based on a rectangular cavity coupled with a semi-circular cavity[J]. Acta Photonica Sinica, 2016, 45(8): 0823002.

[20] ZHANG Zhi-dong, LUO Liang, XUE Chen-yang, et al. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors[J]. Sensors, 2016, 16(5): 642-651.

[21] ZHAO X, ZHANG Z, YAN S. Tunable Fano resonance in asymmetric MIM waveguide structure[J]. Sensors, 2017, 17(7): 1494-1501.

[22] LIU Qiang, BIBBO L, ALBIN S, et al. Plasmonic waveguide design for the enhanced forward stimulated Brillouin scattering in diamond[J]. Scientific Report, 2018, 8(1): 88-97.

[23] KEKATPURE R D, HRYCIW A C, BARNRD E S, et al. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator[J]. Optics Express, 2009, 17: 4112-24129.

[24] GAI Hong-fei, WANG Jia, TIAN Qian. Modified Debye model parameters of metals applicable for broadband calculations[J]. Applied Optics, 2007, 46: 2229-2233.

[25] CHEN Jian-jun, LI Zhi, LEI Ming, et al. Plasmonic Y-splitters of high wavelength resolution based on strongly coupled-resonator effects[J]. Plasmonics, 2012, 7: 441-445.

[26] CHEN J, LI Z, ZOU Y, et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits[J]. Plasmonics, 2013, 8: 1627-1631.

何丙乾, 李永红, 曹雅楠, 岳凤英. 基于MIM谐振腔内嵌金属方芯结构的可调谐Fano共振[J]. 光子学报, 2018, 47(11): 1123003. HE Bing-qian, LI Yong-hong, CAO Ya-nan, YUE Feng-ying. Tunable Fano Resonance Based on Metal Square Core Structure Embedded in MIM Resonator[J]. ACTA PHOTONICA SINICA, 2018, 47(11): 1123003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!