中国激光, 2020, 47 (7): 0701011, 网络出版: 2020-07-10   

半导体微纳米线激光器研究进展 下载: 2773次特邀综述

Research Progress on Semiconductor Micro/Nanowire Lasers
于果 1,2李俊超 1,2温培钧 1,2胡晓东 1,2,*
作者单位
1 北京大学物理学院, 北京 100871
2 北京大学人工微结构和介观物理国家重点实验室, 北京 100871
引用该论文

于果, 李俊超, 温培钧, 胡晓东. 半导体微纳米线激光器研究进展[J]. 中国激光, 2020, 47(7): 0701011.

Yu Guo, Li Junchao, Wen Peijun, Hu Xiaodong. Research Progress on Semiconductor Micro/Nanowire Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701011.

参考文献

[1] Dong Y J, Tian B Z, Kempa T J, et al. Coaxial group III-nitride nanowire photovoltaics[J]. Nano Letters, 2009, 9(5): 2183-2187.

[2] Wanekaya A K, Chen W, Myung N V, et al. Nanowire-based electrochemical biosensors[J]. Electroanalysis, 2006, 18(6): 533-550.

[3] Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics[J]. Small, 2005, 1(1): 142-147.

[4] Yan R X, Gargas D, Yang P D. Nanowire photonics[J]. Nature Photonics, 2009, 3(10): 569-576.

[5] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4(5): 89-90.

[6] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279(5348): 208-211.

[7] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth[J]. Journal of the American Chemical Society, 2001, 123(13): 3165-3166.

[8] Yang P D, Lieber C M. Nanorod-superconductor composites: a pathway to materials with high critical current densities[J]. Science, 1996, 273(5283): 1836-1840.

[9] Björk M T, Ohlsson B J, Sass T, et al. One-dimensional heterostructures in semiconductor nanowhiskers[J]. Applied Physics Letters, 2002, 80(6): 1058-1060.

[10] Bao X Y, Soci C, Susac D, et al. Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition[J]. Nano Letters, 2008, 8(11): 3755-3760.

[11] Zubia D, Hersee S D. Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials[J]. Journal of Applied Physics, 1999, 85(9): 6492-6496.

[12] Smith P A, Nordquist C D, Jackson T N, et al. Electric-field assisted assembly and alignment of metallic nanowires[J]. Applied Physics Letters, 2000, 77(9): 1399-1401.

[13] Tao A R, Huang J X, Yang P D. Langmuir-Blodgettry of nanocrystals and nanowires[J]. Accounts of Chemical Research, 2008, 41(12): 1662-1673.

[14] Yang P D. Wires on water[J]. Nature, 2003, 425(6955): 243-244.

[15] Huang Y, Duan X, Wei Q, et al. Directed assembly of one-dimensional nanostructures into functional networks[J]. Science, 2001, 291(5504): 630-633.

[16] Messer B, Song J H, Yang P D. Microchannel networks for nanowire patterning[J]. Journal of the American Chemical Society, 2000, 122(41): 10232-10233.

[17] Ahn J H, Kim H S, Lee K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials[J]. Science, 2006, 314(5806): 1754-1757.

[18] Pauzauskie P J, Radenovic A, Trepagnier E, et al. Optical trapping and integration of semiconductor nanowire assemblies in water[J]. Nature Materials, 2006, 5(2): 97-101.

[19] 朱晨俊, 宋五洲, 屈铭, 等. 硅基纳米光镊结构的热分析和捕获特性[J]. 光学学报, 2019, 39(3): 0324002.

    Zhu C J, Song W Z, Qu M, et al. Thermal analysis and trapping properties of silicon-based optical nanotweezer structures[J]. Acta Optica Sinica, 2019, 39(3): 0324002.

[20] Li S F, Waag A. GaN based nanorods for solid state lighting[J]. Journal of Applied Physics, 2012, 111(7): 071101.

[21] Choi J H, No Y S, So J P, et al. A high-resolution strain-gauge nanolaser[J]. Nature Communications, 2016, 7: 11569.

[22] Buus J, Murphy E J. Tunable lasers in optical networks[J]. Journal of Lightwave Technology, 2006, 24(1): 5-11.

[23] Coldren L A, Fish G A, Akulova Y, et al. Tunable semiconductor lasers: a tutorial[J]. Journal of Lightwave Technology, 2004, 22(1): 193-202.

[24] Hänsch T W, Shahin I S, Schawlow A L. High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser[J]. Physical Review Letters, 1971, 27(11): 707-710.

[25] Pascu M L, Moise N, Staicu A. Tunable dye laser applications in environment pollution monitoring[J]. Journal of Molecular Structure, 2001, 598(1): 57-64.

[26] Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser[J]. Physical Review Letters, 2006, 96(14): 143903.

[27] Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids[J]. Physical Review, 1953, 92(5): 1324.

[28] Tang H, Lévy F, Berger H, et al. Urbach tail of anatase TiO2[J]. Physical Review B, 1995, 52(11): 7771-7774.

[29] Liu X, Zhang Q, Xiong Q, et al. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption[J]. Nano Letters, 2013, 13(3): 1080-1085.

[30] Li J, Meng C, Liu Y, et al. Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process[J]. Advanced Materials, 2013, 25(6): 832-837.

[31] Pan A, Liu D, Liu R, et al. Optical waveguide through CdS nanoribbons[J]. Small, 2005, 1(10): 980-983.

[32] Xu J, Zhuang X, Guo P, et al. Asymmetric light propagation in composition-graded semiconductor nanowires[J]. Scientific Reports, 2012, 2: 820.

[33] Yang Z Y, Wang D L, Meng C, et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires[J]. Nano Letters, 2014, 14(6): 3153-3159.

[34] Zong H, Yang Y, Ma C, et al. Flexibly and repeatedly modulating lasing wavelengths in a single core-shell semiconductor microrod[J]. ACS Nano, 2017, 11(6): 5808-5814.

[35] Chu S, Wang G P, Zhou W H, et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology, 2011, 6(8): 506-510.

[36] Huang J, Chu S, Kong J Y, et al. ZnO p-n homojunction random laser diode based on nitrogen-doped p-type nanowires[J]. Advanced Optical Materials, 2013, 1(2): 179-185.

[37] Zhao S, Liu X H, Wu Y, et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature[J]. Applied Physics Letters, 2016, 109(19): 191106.

[38] Liu C H, Xu H X, Ma J S, et al. Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires[J]. Applied Physics Letters, 2011, 99(6): 063115.

[39] Wang R J, Liu X D, Shih I, et al. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si[J]. Applied Physics Letters, 2015, 106(26): 261104.

[40] Koblmüller G, Mayer B, Stettner T, et al. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review[J]. Semiconductor Science and Technology, 2017, 32(5): 053001.

[41] Nami M, Stricklin I E. DaVico K M, et al. Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes[J]. Scientific Reports, 2018, 8(1): 1-11.

[42] Liu X F, Zhang Q, Yip J N, et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect[J]. Nano Letters, 2013, 13(11): 5336-5343.

[43] Li Q M, Wright J B, Chow W W, et al. Single-mode GaN nanowire lasers[J]. Optics Express, 2012, 20(16): 17873-17879.

[44] Xu H W, Wright J B, Hurtado A, et al. Gold substrate-induced single-mode lasing of GaN nanowires[J]. Applied Physics Letters, 2012, 101(22): 221114.

[45] Wang Y Y, Xu C X, Jiang M M, et al. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect[J]. Nanoscale, 2016, 8(37): 16631-16639.

[46] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 1946, 69: 37-38.

[47] Yang Y, Zong H, Ma C, et al. Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing[J]. Optics Express, 2017, 25(18): 21025-21036.

[48] Scofield A C, Kim S H, Shapiro J N, et al. Bottom-up photonic crystal lasers[J]. Nano Letters, 2011, 11(12): 5387-5390.

[49] Xiao Y, Meng C, Wang P, et al. Single-nanowire single-mode laser[J]. Nano Letters, 2011, 11(3): 1122-1126.

[50] Yang Y, Wei T T, Zhu R, et al. Tunable single-mode lasing in a single semiconductor microrod[J]. Optics Express, 2018, 26(23): 30021-30029.

[51] Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing[J]. Nano Letters, 2014, 14(8): 4381-4388.

[52] 徐娅, 边捷, 张伟华. 局域表面等离激元纳米光学传感器的原理与进展[J]. 激光与光电子学进展, 2019, 56(20): 202407.

    Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202407.

[53] Jayaprakash R, Kalaitzakis F G, Christmann G, et al. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap[J]. Scientific Reports, 2017, 7(1): 5542.

[54] Deveaud B. Exciton-polariton Bose-Einstein condensates[J]. Annual Review of Condensed Matter Physics, 2015, 6(1): 155-175.

[55] Gérard J, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities[J]. Journal of Lightwave Technology, 1999, 17(11): 2089-2095.

[56] Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

[57] Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 1963, 51(1): 89-109.

[58] Khitrova G, Gibbs H M, Kira M, et al. Vacuum Rabi splitting in semiconductors[J]. Nature Physics, 2006, 2(2): 81-90.

[59] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489-1537.

[60] Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates[J]. Nature Physics, 2014, 10(11): 803-813.

[61] Laussy F P, Malpuech G, Kavokin A V, et al. Spontaneous coherence buildup in polariton lasers[J]. Solid State Communications, 2005, 134(1): 121-125.

[62] Guillet T, Brimont C. Polariton condensates at room temperature[J]. Comptes Rendus Physique, 2016, 17(8): 946-956.

[63] Das A, Heo J, Jankowski M, et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 2011, 107(6): 066405.

[64] Das A, Bhattacharya P, Banerjee A, et al. Dynamic polariton condensation in a single GaN nanowire-dielectric microcavity[J]. Physical Review B, 2012, 85(19): 195321.

[65] Heo J, Jahangir S, Xiao B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Letters, 2013, 13(6): 2376-2380.

[66] Trichet A A P, Médard F, Zunigaperez J, et al. From strong to weak coupling regime in a single GaN microwire up to room temperature[J]. New Journal of Physics, 2012, 14(7): 073004.

[67] Gong S H, Ko S M, Jang M H, et al. Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire[J]. Nano Letters, 2015, 15(7): 4517-4524.

[68] 胡颖, 李浩林, 王登魁, 等. ZnO纳米线表面改性及其光学性质[J]. 中国激光, 2018, 45(10): 1003002.

    Hu Y, Li H L, Wang D K, et al. Surface modification and optical properties of ZnO nanowires[J]. Chinese Journal of Lasers, 2018, 45(10): 1003002.

[69] Xu D, Xie W, Liu W H, et al. Polariton lasing in a ZnO microwire above 450 K[J]. Applied Physics Letters, 2014, 104(8): 082101.

[70] Bhattacharya P, Xiao B, Das A, et al. Solid state electrically injected exciton-polariton laser[J]. Physical Review Letters, 2013, 110(20): 206403.

[71] Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser[J]. Nature, 2013, 497(7449): 348-352.

[72] Bhattacharya P, Frost T, Deshpande S, et al. Room temperature electrically injected polariton laser[J]. Physical Review Letters, 2014, 112(23): 236802.

于果, 李俊超, 温培钧, 胡晓东. 半导体微纳米线激光器研究进展[J]. 中国激光, 2020, 47(7): 0701011. Yu Guo, Li Junchao, Wen Peijun, Hu Xiaodong. Research Progress on Semiconductor Micro/Nanowire Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701011.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!