红外与毫米波学报, 2017, 36 (5): 620, 网络出版: 2017-11-21  

基于非局域热平衡模式的临近空间目标背景临边对比度模型

Model of near-space limb contrast based on non-local thermodynamics equilibrium model
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院 科学岛分院, 安徽 合肥 230026
3 北京环境特性研究所 光学辐射重点实验室, 北京 100854
摘要
对临近空间目标的空基/星载红外探测中的目标背景临边对比度问题进行物理建模, 详细阐述对比度的定义和模型中的高层大气辐射问题.利用适于模拟高层大气辐射的非局域热平衡模式, 结合探测器噪声假定, 计算理想黑体目标的临边对比度并分析高层大气辐射特性对对比度的影响.模拟结果表明, 在评估目标探测可行性时必须考虑探测器噪声的影响;在高层大气临边路径下水汽波段比大气窗区的可探测性更好, 而目标本征辐射与大气临边吸收和背景辐射间的关系导致了对比度复杂的变化特征.
Abstract
A physical model was established for studying near-space limb radiance contrast when the target is detected by space-borne infrared surveillance system. The definition of limb contrast and radiation issues of upper atmosphere of the model was described in detail. The target’s limb contrasts were simulated and analyzed to show upper atmospheric radiation properties’ effects to the target visibility based on non-local thermodynamics equilibrium atmospheric model and assumed detector’s noise. The results indicate that the detector’s noise must be considered for evaluating surveillance feasibility correctly. The contrast at the traditional waveband of the strong absorption by water vapor is better than the often-used ‘atmospheric windows’ for the upper atmospheric limb detection. The complicated contrast characteristics result from the relationship among target inherent radiation, atmospheric absorption and background radiation.
参考文献

[1] Picard R H, Dewan E M, Winick J R, et al. Optical/Infrared Signatures for Space-Based Remote Sensing[R]. Air Force Research Lab Hanscom Afb Ma Space Vehicles Directorate, 2007.

[2] Price S D. History of Space-Based Infrared Astronomy and the Air Force Infrared Celestial Backgrounds Program [R]. Air Force Research Lab Hanscom Afb Ma Space Vehicles Directorate, 2008.

[3] Stair Jr A T, Ulwick J C, Baker K D, et al. Rocketborne observations of atmospheric infrared emissions in the auroral region[M]. Atmospheres of Earth and the Planets. Springer Netherlands, 1975: 335-346.

[4] Stair A T, Sharma R D, Nadile R M, et al. Observations of limb radiance with cryogenic spectral infrared rocket experiment [J]. Journal of Geophysical Research, 1985, 90(A10): 9763-9775.

[5] Paxton L J, Meng C I, Anderson D E, et al. MSX-A multiuse space experiment [J]. Johns Hopkins APL Technical Digest, 1996, 17(1):19.

[6] Sundberg R L, Duff J W, Gruninger J H, et al. SHARC, a Model for Calculating Atmospheric Infrared Radiation Under Non‐Equilibrium Conditions [J]. The upper mesosphere and lower thermosphere: A review of experiment and theory, 1995: 287-295.

[7] Dothe H, Duff J W, Gruninger J H, et al. Auroral radiance modeling with SAMM2 [C]//SPIE Europe Remote Sensing. International Society for Optics and Photonics, 2009: 747509-747509-7.

[8] He X, Xu X. Contrast analysis of space-based Earth observation infrared system [C]//SPIE Security+ Defence. International Society for Optics and Photonics, 2014: 92490F-92490F-11.

[9] WANG Yi, FAN Wei, RAO Rui-zhong. The analysis of the target-background contrast under a typical atmospheric condition [J]. Laser&Infrared, (王毅,范伟,饶瑞中. 典型大气条件下的目标-背景对比度的计算分析. 激光与红外) 2004, 34(5):375-378.

[10] YE Qing, SUN Xiao-quan, SHAO Li. Analysis of optimum detective wavebands for infrared early-warning satellite [J]. Infrared and Laser Engineering,(叶庆,孙晓泉,邵立. 红外预警卫星最佳探测波段分析. 红外与激光工程) 2010, 39(3):389-393.

[11] Horvath H. Atmospheric visibility [J]. Atmospheric Environment, 1981, 15(10-11): 1785-1796.

[12] Stair A T. MSX design parameters driven by targets and backgrounds [J]. Johns Hopkins Apl Technical Digest, 1996, 17(1):11.

[13] Gruninger J H, Sundberg R L, Acharya P K, et al. User's Manual For SHARC-4 The Strategic High-Altitude Radiance Code [R]. Phillips Lab Hanscom Afb Ma, 1997.

[14] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

[15] López-Puertas M, Taylor F W. Non-LTE radiative transfer in the atmosphere[M]. World Scientific, 2001.

[16] TAN Peng-fei, HAN Yu-ge, XUAN Yi-min. Analysis of the Non-Local Thermodynamic Equilibrium Effect on Infrared Limb Radiances in the Upper Atmosphere [J]. Acta Optica Sinica, (谭鹏飞,韩玉阁,宣益民. 高层非局地热力平衡大气对红外临边辐射的影响分析. 光学学报) 2014, 34(10):1-7.

[17] Shroll R M, Adler-Golden S, Duff J W, et al. User's Manual for SAG-2 SHARC/SAMM Atmosphere Generator [R]. Spectral Sciences Inc Burlington Ma, 2003.

[18] Fischer H, Birk M, Blom C, et al. MIPAS: an instrument for atmospheric and climate research [J]. Atmospheric Chemistry and Physics, 2008, 8(8):2151-2188.

[19] Bartschi B Y, Steed A J, Blakeley J G, et al. Cryogenic infrared radiance instrumentation for shuttle (CIRRIS-1A) instrumentation and flight performance [C]//San Diego'92. International Society for Optics and Photonics, 1993: 64-74.

刘栋, 戴聪明, 唐超礼, 武鹏飞, 刘铮, 毛宏霞, 魏合理. 基于非局域热平衡模式的临近空间目标背景临边对比度模型[J]. 红外与毫米波学报, 2017, 36(5): 620. LIU Dong, DAI Cong-Ming, TANG Chao-Li, WU Peng-Fei, LIU Zheng, MAO Hong-Xia, WEI He-Li. Model of near-space limb contrast based on non-local thermodynamics equilibrium model[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 620.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!