光子学报, 2016, 45 (10): 1014003, 网络出版: 2016-11-14   

用双滤波反馈半导体激光器产生低延时特征的混沌信号

Chaotic Signal Generation with Low Time-delay Signature Based on a Semiconductor Laser Subject to Double Filtered Optical Feedback
作者单位
西南大学 物理科学与技术学院, 重庆 400715
摘要
将两个法布里-珀罗干涉仪作为双外腔构成双滤波反馈半导体激光器,获取低延时特征混沌信号,理论研究了反馈时间、反馈强度、滤波器带宽以及滤波器中心频率与激光器中心频率之间的频率失谐对双滤波反馈半导体激光器混沌输出延时特征的影响.研究结果表明:当两个腔的反馈延迟时间之差约等于激光器弛豫振荡周期的一半时,输出混沌信号的延时特征抑制效果相对较好.在此基础上,通过合理选择反馈强度、滤波器带宽、滤波器中心频率与激光器中心频率之间的频率失谐,双滤波反馈半导体激光器输出混沌信号的延时特征被进一步抑制.最后,绘制混沌延时特征在滤波器带宽和频率失谐构成的参量空间的分布图,确定获取低延时特征的混沌信号所需的反馈参量范围.
Abstract
Two Fabry-Perot interferometers were taken as double external cavities to construct a Double Filtered Optical Feedback Semiconductor Laser (DFOF-SL) for achieving chaotic signal with low time-delay signature, and the influences of feedback time, feedback strength, filter bandwidth, and the frequency detuning between the central frequency of the filter and the solitary laser on the time-delay signature evolution were theoretically investigated. The results show that, when the difference of the feedback time between the two external cavities approximately equals to a half of the relaxation oscillation period of the laser, the chaotic signal with relatively weak time-delay signature can be obtained. Moreover, through suitably selecting feedback strength, filter bandwidth, and the frequency detuning between the central frequency of the filter and the solitary laser, the time-delay signature can be further suppressed. Finally, based on the map of time-delay signature evolution in the parameter space of filter bandwidth and frequency detuning, the optimal feedback parameter regions for achieving chaotic signal with low time-delay signature have been determined.
参考文献

[1] LANG R, KOBAYASHI K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, QE-16(3): 347-355.

[2] TOOMEY J P, KANE D M, LEE M W, et al. Nonlinear dynamics of semiconductor lasers with feedback and modulation[J]. Optics Express, 2010, 18(16): 16955-16972.

[3] 谭建锋, 张胜海, 王伟, 等. 延迟光反馈VCSEL的混沌动力学特性[J]. 光子学报, 2011, 40(2): 272-276.

    TAN Jian-Feng, ZHANG Qing-Hai, YU Wei, et al. Chaotic dynamic behaviors of vertical cavity surface emitting laser with delayed optical feedback[J]. Acta Photonica Sinica, 2011, 40(2): 272-276.

[4] MORK J, TROMBORG B, MARK J. Chaos in semiconductor lasers with optical feedback: theory and experiment[J]. IEEE Journal of Quantum Electronics, 1992, 28(1): 93-108.

[5] OLIVER N, JNGLING T, FISCHER I. Consistency properties of a chaotic semiconductor laser driven by optical feedback[J]. Physical Review Letters, 2015, 114(12): 123902.

[6] WANG An-bang, WANG Yun-cai, HE Hu-cheng. Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1633-1635.

[7] ARGYRIS A, SYVRIDIS D, LARGER L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

[8] 刘慧杰, 冯久超, 任斌. 开环全光混沌通信系统中的光纤信道结构[J]. 光子学报, 2012, 41(11): 1267-1273.

    LIU Hui-jie, FENG Jiu-chao, REN Bin. Structure of fiber channel in open-loop all-optical chaotic communication system[J]. Acta Photonica Sinica, 2012, 41(11): 1267-1273.

[9] UCHIDA A, AMANO K, INOUE M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

[10] LI Xiao-zhou, LI Song-sui, ZHUANG Jun-ping, et al. Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback[J]. Optics Letters, 2015, 40(17): 3970-3973.

[11] WANG Bing-jie, WANG Yun-cai, KONG Ling-qin, et al. Multi-target real-time ranging with chaotic laser radar[J]. Chinese Optics Letters, 2008, 6(11): 868-870.

[12] ZHANG Ming-jiang, LIU Tie-gen, LI Pu, et al. Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Pérot laser diode with optical feedback[J]. IEEE Photonics Technology Letters, 2011, 23(24): 1872-1874.

[13] RONTANI D, LOCQUET A, SCIAMANNA M, et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 2007, 32(20): 2960-2962.

[14] VOSS H, KURTHS J. Reconstruction of nonlinear time-delayed feedback models from optical data[J]. Chaos Solitons & Fractals, 1999, 10(4): 805-809.

[15] UDALTSOV V S, GOEDGEBUER J P, LARGER L, et al. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations[J]. Physics Letters A, 2003, 308(1): 54-60.

[16] RONTANI D, LOCQUET A, SCIAMANNA M, et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 2009, 45(7): 879-891.

[17] LEE M W, REES P, SHORE K A, et al. Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications[J]. IEEE Proceedings, 2005, 152(2): 97-102.

[18] WU Jia-gui, XIA Guang-qiong, WU Zheng-mao. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback[J]. Optics Express, 2009, 17(22): 20124-20133.

[19] ZHONG Zhu-qiang, LI Song-sui, CHAN Sze-chun, et al. Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL[J]. Optics Express, 2015, 23(12): 15459-15468.

[20] LI Song-sui, LIU Qing, CHAN Sze-chun. Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser[J]. IEEE Photonics Journal, 2012, 4(5): 1930-1935.

[21] YOUSEFI M, LENSTRA D, VEMURI G. Nonlinear dynamics of a semiconductor laser with filtered optical feedback and the influence of noise[J]. Physical Review E, 2003, 67(4): 046213.

[22] WU Yuan, WANG Bing-jie, ZHANG Jian-zhong, et al. Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback[J]. Mathematical Problems in Engineering, 2013, 2013(4): 571393.

[23] ZHOU Li, XIA Guang-qiong, ZHONG Zhu-qiang, et al. Time-delay signature concealment of polarization-resolved chaos outputs in vertical-cavity surface-emitting lasers with variable-polarization filtered optical feedback[J]. Chinese Optics Letters, 2015, 13(9): 091401.

[24] 朱凝,张辉,李浩.基于一种易于制作的混合型表面等离激元波导结构的超紧凑截线滤波器[J].发光学报,2014,35(7):883-888.

    ZHU Ning, ZHANG Hui, LI Han. Vltra-compat stub-type wavelength filter based on hybrid plasmonic waveguide structure improved for fabrication[J]. Chinese Journal of Luminescence, 2014, 35(7): 883-888.

[25] UDALTSOV V S, LARGER L, GOEDGEBUER J P, et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J]. Journal of Optical Technology, 2005, 72(5): 373-377.

[26] CHRISTOPH B, BERND P. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 1741.

卢东, 钟祝强, 夏光琼, 吴正茂. 用双滤波反馈半导体激光器产生低延时特征的混沌信号[J]. 光子学报, 2016, 45(10): 1014003. LU Dong, ZHONG Zhu-qiang, XIA Guang-qiong, WU Zheng-mao. Chaotic Signal Generation with Low Time-delay Signature Based on a Semiconductor Laser Subject to Double Filtered Optical Feedback[J]. ACTA PHOTONICA SINICA, 2016, 45(10): 1014003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!