光电工程, 2017, 44 (12): 1180, 网络出版: 2018-01-17   

飞秒贝塞尔光用于可磁驱动微管道的高效加工

Microtube fabrication based on femtosecond Bessel beam and its flexible driving with external magnetic field
作者单位
中国科学技术大学精密机械与精密仪器系,合肥 230026
摘要
微管道是微纳领域最基本的模型之一,其结构简单、均匀,应用广泛。本文提出一种利用飞秒贝塞尔光进行激光直写,结合磁控溅射金属镀层,加工可磁驱动微管道的新方法。利用空间光调制器将飞秒激光调制成飞秒贝塞尔光,通过高数值孔径的物镜聚焦,配合精密三维压电平台的移动,实现了微管道的拉伸加工;通过后续磁控溅射镍处理后,微管道具有超顺磁特性,利用外部磁场可以有效实现驱动。本文详细研究了利用空间光调制器产生的飞秒贝塞尔光的传播和聚焦特性,提出的微管道加工新方法可实现微管道直径、长度、排布的灵活控制,加工效率高;经磁控溅射镍处理的微管道可以利用外部磁场实现在液体环境下沿特定路径的可控驱动,运动灵敏度高,环境适应性强。这种新的微管道加工方法具有灵活、可控、高效的优点,所加工的可驱动微管道在无创手术、靶向药物运输、生物成像与传感、微环境净化等领域具有广阔的应用前景。
Abstract
Microtube, with simple and uniform geometry, is one of the basic structures in micro/nano field. We present a method for the fabrication of magnetic drivable microtubes, by direct femtosecond laser writing com-bined with magnetron sputtering with metal layer. Femtosecond laser beam is modulated into Bessel beam with spatial light modulator (SLM), and then Bessel beam is focused with a high numerical aperture objective. Micro-tubes are fabricated by scanning focused femtosecond Bessel beam in a sample anchored on a three dimen-sion stage. Followed by magnetron sputtering a nickel layer, the microtubes exhibit supermagnetic property and can be flexibly driven by external magnetic field. In this study, the propagation and high numerical aperture fo-cusing properties of femtosecond Bessel beams are investigated. Microtubes, with well controlled diameter, length and distribution are efficiently fabricated. Rapid steering of nickel coated microtubes along specific route in fluid environment with external magnetic field has been realized. The steering of microtubes can be realized in various fluid environments. This method is flexible, controllable and efficient and the fabricated drivable mi-crotubes have a promising applications in noninvasive surgery, targeted drug delivery, bioimaging or biosensing and microenvironment cleaning.
参考文献

[1] Xi Wang, Solovev A A, Ananth A N, et al. Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery[J]. Nanoscale, 2013, 5(4): 1294-1297.

[2] Kagan D, Benchimol M J, Claussen J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation[J]. Angewandte Chemie International Edition, 2012, 124(30): 7637-7640.

[3] Li Jinxing, Thamphiwatana S, Liu Wenjuan, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract[J]. ACS Nano, 2016, 10(10): 9536-9542.

[4] Gao Wei, Kagan D, Pak O S, et al. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery[J]. Small, 2012, 8(3): 460-467.

[5] Yang Liang, Ji Shengyun, Xie Kenan, et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells[J]. Optics Express, 2017, 25(7): 8144–8157.

[6] Kim S, Qiu Famin, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation[J]. Advanced Materials, 2013, 25(41): 5863-5868.

[7] Vilela D, Parmar J, Zeng Yongfei, et al. Graphene-based microbots for toxic heavy metal removal and recovery from water[J]. Nano Letters, 2016, 16(4): 2860–2866.

[8] Zhao Guanjia, Sanchez S, Schmidt O G, et al. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters[J]. Nanoscale, 2013, 5(7): 2909-2914.

[9] Solovev A A, Mei Yongfeng, Bermúdez Urena E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles[J]. Small, 2009, 5(14): 1688-1692.

[10] Solovev A A, Xi Wang, Gracias D H, et al. Self-propelled nanotools[J]. ACS Nano, 2012, 6(2): 1751-1756.

[11] Sitt A, Soukupova J, Miller D, et al. Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes[J]. Small, 2016, 12(11): 1432-1439.

[12] Stankevicius E, Gertus T, Rutkauskas M, et al. Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique[J]. Journal of Micromechanics and Microengineering, 2012, 22(6): 065022.

[13] Sattayasamitsathit S, Kou Huanhuan, Gao Wei, et al. Fully loaded micromotors for combinatorial delivery and autonomous release of cargoes[J]. Small, 2014, 10(14): 2830-2833.

[14] Gao Wei, Dong Rengfeng, Thamphiwatana S, et al. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors[J]. ACS Nano, 2015, 9(1): 117-123.

[15] Solovev A A, Smith E J, Bof' Bufon C C, et al. Light-controlled propulsion of catalytic microengines[J]. Angewandte Chemie International Edition, 2011, 50(46): 10875-10878.

[16] Sharma R, Velev O D. Remote steering of self-propelling microcircuits by modulated electric field[J]. Advanced Functional Materials, 2015, 25(34): 5512-5519.

[17] Balk A L, Mair L O, Mathai P P, et al. Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles[J]. ACS Nano, 2014, 8(8): 8300-8309.

[18] Tottori S, Zhang Li, Qiu Famin, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 811-816.

[19] Servant A, Qiu Famin, Mazza M, et al. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella[J]. Advanced Materials, 2015, 27(19): 2981-2988.

[20] 林培秋, 王辉, 庞辉. 基于液晶空间光调制器的相息图扫描三维成像[J]. 光电工程, 2010, 37(3): 138-143.

    Lin Peiqiu, Wang Hui, Pang Hui. Scanning three-dimensional image with kinoform based on liquid crystal spatial light modulation[J]. Opto-Electronic Engineering, 2010, 37(3): 138-143.

[21] 饶生龙, 吴培超, 张晨初, 等. 基于空间光调制器的能量可控飞秒激光加工[J]. 中国激光, 2017, 44(1): 0102008.

    Rao Shenglong, Wu Peichao, Zhang Chenchu, et al. Ener-gy-controllable femtosecond laser fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 2017, 44(1): 0102008.

[22] Bhuian B, Winfield R J, O’Brien S, et al. Pattern generation using axicon lens beam shaping in two-photon polymerisa-tion[J]. Applied Surface Science, 2007, 254(4): 841-844.

[23] Mhanna R, Qiu Famin, Zhang Li, et al. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery[J]. Small, 2014, 10(10): 1953-1957.

[24] Ding Yun, Qiu Famin, Solvas X C I, et al. Microfluidic-based droplet and cell manipulations using artificial bacterial flagella[J]. Micromachines, 2016, 7(2): 25.

辛晨, 杨亮, 胡治江, 胡凯, 钱冬冬, 胡衍雷, 李家文, 吴东. 飞秒贝塞尔光用于可磁驱动微管道的高效加工[J]. 光电工程, 2017, 44(12): 1180. Chen Xin, Liang Yang, Zhijiang Hu, Kai Hu, Dongdong Qian, Yanlei Hu, Jiawen Li, Dong Wu. Microtube fabrication based on femtosecond Bessel beam and its flexible driving with external magnetic field[J]. Opto-Electronic Engineering, 2017, 44(12): 1180.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!