Journal of Innovative Optical Health Sciences, 2018, 11 (3): 1850012, Published Online: Oct. 6, 2018  

Improved wavelet hierarchical threshold filter method for optical coherence tomography image de-noising

Author Affiliations
1 School of Optoelectronic Information, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
2 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, P. R. China
3 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
4 School of Electronic and Communication Engineering, Guiyang University, Guiyang 550005, P. R. China
5 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
6 Chinese Academy of Sciences, The Key Laboratory on Adaptive Optics, Chengdu 610209, P. R. China
Abstract
According to the speckle feature in Optical coherence tomography (OCT), images with speckle indicate not only noise but also signals, an improved wavelet hierarchical threshold filter (IWHTF) method is proposed. At first, a modified hierarchical threshold-selected algorithm is used to prevent signals from being removed by assessing suitable thresholds for different noise levels. Then, an improved wavelet threshold function based on two traditional threshold functions is proposed to trade-off between speckle removing and sharpness degradation. The de-noising results of an OCT finger skin image shows that the IWHTF method obtains better objective evaluation metrics and visual image quality improvement. When α=0.2, β=5.0 and K=1.2, the improved method can achieve 9.58 dB improvement in signal-to-noise ratio, with sharpness degraded by 3.81%.
References

[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography," Science 254 (5035), 1178-1181 (1991).

[2] E. A. Swanson, J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact," Biomed. Opt. Express 8(3), 1638-1664 (2017).

[3] S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, F. Lu ,“In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT," Biomed. Opt. Express 7(2), 663-676 (2016).

[4] S. Xiang, L. Zhou, J. Schmitt, “Speckle noise reduction for optical coherence tomography," Proc. SPIE 3196, 7988 (1998).

[5] J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography," J. Biomed. Opt. 4(1), 95 (1999).

[6] A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering," J. Opt. Soc. Am. A 24(7), 1901-1910 (2007).

[7] M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25(8), 545-547 (2000).

[8] B. Karamata, K. Hassler, M. Laubscher, T. Lasser, “Speckle statistics in optical coherence tomography." J. Opt. Soc. Am. A 22(4), 593-596 (2005).

[9] P. Lee, W. Gao, X. Zhang, “Speckle properties of the logarithmically transformed signal in optical coherence tomography," J. Opt. Soc. Am. A 28(4), 517-522 (2011).

[10] M. Li, R. Idoughi, B. Choudhury, W. Heidrich, “Statistical model for OCT image denoising," Biomed. Opt. Express 8, 3903-3917 (2017).

[11] K. Yu, L. Ji, L. Wang, P. Xue, “How to optimize OCT image," Opt. Express 9, 24-35 (2001).

[12] M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8(3), 565-569 (2003).

[13] T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb," Opt. Express 16(6), 4163-4176 (2008).

[14] A. E. Desjardins, B. J. Vakoc, G. J. Tearney, B. E. Bouma, “Speckle reduction in OCT using massivelyparallel detection and frequency-domain ranging," Opt. Express 14(11), 4736-4745 (2006).

[15] N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8(2), 260-263 (2003).

[16] A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction," Opt. Express 15(10), 6200-6209 (2007).

[17] D. P. Popescu, M. D. Hewko, M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample," Opt. Commun. 269(1), 247-251 (2007).

[18] P. Li, L. Zhou, Y. Ni, Z. Ding, P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction," J. Biomed. Opt. 21(8), 086014 (2016).

[19] Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage," Opt. Lett. 34(10), 1516-1518 (2009).

[20] Z. Jian, L. Yu, B. Rao, B. J. Tromberg, Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform," Opt. Express 18(2), 1024-1032 (2010).

[21] J. Xu, H. Ou, E. Y. Lam, P. C. Chui, K. K. Y. Wong, “Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage," Opt. Lett. 38(15), 2900-2903 (2013).

[22] D. L. Marks, T. S. Ralston, S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22(11), 2366-2371 (2005).

[23] P. Puvanathasan, K. Bizheva, “Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set," Opt. Express 15 (24), 15747-15758 (2007).

[24] P. Puvanathasan, K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images," Opt. Express 17, 733-746 (2009).

[25] D. Yin, Y. Gu, P. Xue, “Speckle-constrained variational methods for image restoration in optical coherence tomography," J. Opt. Soc. Am. A 30(5), 878-885 (2013).

[26] D. Xu, N. Vaswani, Y. Huang, J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction," Opt. Lett. 37, 4209-4211 (2012).

[27] X. Liu, J. U. Kang, “Compressive SD-OCT: The application of compressed sensing in spectral domain optical coherence tomography," Opt. Express 18(21), 22010-22019 (2010).

[28] N. Zhang, T. Huo, C. Wang, T. Chen, J. Zheng, P. Xue, “Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography," Opt. Lett. 37, 3075-3077 (2012).

[29] L. Fang, S. Li, Qi. Nie, J. A. Izatt, C. A. Toth, S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images," Biomed. Opt. Express 3(5), 927-942 (2012).

[30] C. Liu, A. Wong, K. Bizheva, P. Fieguth, H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery," Opt. Express 20, 10200-10211 (2012).

[31] I. Kopriva, F. Shi, X. Chen, “Enhanced low-rank+ sparsity decomposition for speckle reduction in optical coherence tomography," J. Biomed. Opt. 21(7), 076008-076008 (2016).

[32] L. Fang, S. Li, D. Cunefare, S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images," IEEE Transactions on Medical Imaging 36(2), 407-421 (2017).

[33] D. C. Adler, T. H. Ko, J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Opt. Lett. 29(24), 2878-2880 (2004).

[34] M. Nasri, H. Nezamabadi-pour, “Image denoising in the wavelet domain using a new adaptive thresholding function," Neurocomputing 72(4), 1012-1025 (2009).

[35] J. Xu, H. Ou, C. Sun, P. Chui, V. X. D. Yang, E. Y. Lam, K. K. Y. Wong, “Wavelet domain compounding for speckle reduction in optical coherence tomography," J. Biomed. Opt. 18(9), 096002(2013).

[36] F. Zaki, Y. Wang, H. Su, X. Yuan, X. Liu, “Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography," Biomed. Opt. Express 8(5), 2720-2731 (2017).

[37] M. A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin, R. P. Tornow, “Wavelet denoising of multiframe optical coherence tomography data," Biomed. Opt. Express 3, 572-589 (2012).

[38] X. Liu, J. C. R. Roman, Y. Huang, Y. Guo, J. U. Kang, “Robust spectral-domain optical coherence tomography speckle model and its cross-correlation coe±cient analysis," J. Opt. Soc. Am. A 30(1), 51-59 (2013).

[39] Y. Du, G. Liu, G. Feng, Z. Chen, “Speckle reduction in optical coherence tomography images based on wave atoms," J. Biomed. Opt. 19(5), 056009 (2014).

[40] D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage," J. Ame. Stat. Assoc. 90(432), 1200-1224 (1995).

Jing Cao, Pinghe Wang, Bo Wu, Guohua Shi, Yan Zhang, Xiqi Li, Yudong Zhang, Yong Liu. Improved wavelet hierarchical threshold filter method for optical coherence tomography image de-noising[J]. Journal of Innovative Optical Health Sciences, 2018, 11(3): 1850012.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!