光学学报, 2016, 36 (6): 0619001, 网络出版: 2016-05-25   

正色散光学微腔中光场演化过程研究 下载: 511次

Spatiotemporal Evolution of the Light Field Inside the Microresonator with Normal Dispersion
作者单位
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
2 中国科学院西安光学精密机械研究所光谱成像技术重点实验室, 陕西 西安 710119
摘要
以微腔内光场演化的理论模型Lugiato-Lefeve方程为基础,分别讨论了连续光(CW)抽运和连续光与脉冲光混合抽运两种情况下,正色散微腔中光场的演化过程,以及各参数对光场分布的影响。理论分析结果表明,在CW抽运的情况下,微腔中有稳定的暗孤子存在,并且随着色散系数的增加,暗孤子的脉宽会增加,而失谐参量的增加会使暗孤子的形状发生变化。采用混合抽运可以在腔内形成脉冲形式的光场分布,弥补了单一CW抽运时在特定参数的正色散腔内难以产生亮孤子脉冲的不足。抽运脉冲的振幅过高,会导致腔内的脉冲发生分裂,微腔失谐参量的增加会导致脉冲展宽以及脉冲能量降低。理论分析结果对实现高质量的Kerr光频梳具有重要意义,能够帮助选择合适的微腔及抽运参数。
Abstract
Based on the Lugiato-Lefever equation, the spatiotemporal evolutions in microresonator are discussed respectively, which is pumped by the continuous wave (CW) light as well as the combination of CW light and periodical pulse train simultaneously, and the effect of each parameter on light field is studied. Simulation results indicate that the dark soliton can exist in the microresonator with CW pumped. The width of the dark soliton pulse increases with the dispersion coefficient. The shape of the dark soliton pulse is varied when the frequency detuning is increased. Meanwhile, in the normal dispersion regime, the pulses can form in the microresonator by the use of synthetical pumping manner. The drawback is compensated that the bright soliton pulse is difficult to be generated in the microresonator for single CW pumped of certain parameters configuration. Moreover, the high amplitude of the pump pulses leads to the pulse split, the pulse stretching and the loss of the pulse occur when the frequency detuning of the microresonator rises. Theoretical analysis results are significant for high-quality Kerr optical frequency comb and their practical applications, and they are helpful for selecting the proper microresonator and pump parameters.
参考文献

[1] 邢书剑, 张福民, 曹士英, 等. 飞秒光频梳的任意长绝对测距[J]. 物理学报, 2013, 62(17): 170603.

    Xing Shujian, Zhang Fumin, Cao Shiying, et al.. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2013, 62(17): 170603.

[2] 孟飞, 曹士英, 赵光贞, 等. 掺铒光纤光梳在锶晶格钟中的应用研究[J]. 中国激光, 2015, 42(7): 0702012.

    Meng Fei, Cao Shiying, Zhao Guangzhen, et al.. Application of an Er: Doped fiber comb for Sr lattice clock[J]. Chinese J Lasers, 2015, 42(7): 0702012.

[3] 窦玉杰, 张洪明, 姚敏玉. 基于光频梳的超短光脉冲的产生及其在光模数转换中的应用[J]. 中国激光, 2012, 39(12): 1205006.

    Dou Yujie, Zhang Hongming, Yao Minyu. Ultra-short optical pulse generation based on optical frequency comb and application in optical analog-to-digital conversion[J]. Chinese J Lasers, 2012, 39(12): 1205006.

[4] 孟飞, 曹士英, 蔡岳, 等. 光纤飞秒光学频率梳的研制及绝对光学频率测量[J]. 物理学报, 2011, 60(10): 100601.

    Meng Fei, Cao Shiying, Cai Yue, et al.. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2011, 60(10): 100601.

[5] Washburn B R, Fox R W, Newbury N R, et al.. Fiber-laser-based frequency comb with a tunable repetition rate[J]. Optics Express, 2004, 12(20): 4999-5004.

[6] Swann W C, Mcferran J J, Coddington, et al.. Fiber-laser frequency combs with subhertz relative linewidths[J]. Optics Letters, 2006, 31(20): 3046-3048.

[7] 黄保, 冯鸣, 陈新东, 等. 基于锁模光纤激光器的光学频率梳[J]. 激光杂志, 2009, 30(2): 16-19.

    Huang Bao, Feng Ming, Chen Xindong, et al.. Optical frequency comb based on mode-locked fiber laser[J]. Laser Journal, 2009, 30(2): 16-19.

[8] Lim J, Knabel K, Tillman K A, et al.. A phase-stabilized carbon nanotube fiber laser frequency comb[J]. Optics Express, 2009, 17(16): 14115-14120.

[9] Chao David. Self-referenced 1.5 μm fiber frequency combs at GHz repetition rates[D]. Cambridge: Massachusetts Institute of Technology, 2012.

[10] Herr T, Brasch V, Jost J D, et al.. Temporal solitons in optical microresonators[J]. Nature Photonics, 2012, 8(2): 145-152.

[11] Lamont M R E, Okawachi Y, Gaeta A L. Route to stabilized ultrabroadband microresonator-based frequency combs[J]. Optics Letters, 2013, 38(18): 3478-3481.

[12] Tilo S, Tobtas W, Constanza A H, et al.. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

[13] Pfeifle J, Lauermannn M, Wegner D, et al.. Coherent data transmission with microresonator Kerr frequency combs[J]. Nature Photonics, 2013, 8(5): 375-380.

[14] Pascal D, Katja B, Papp S B, et al.. Self-injection locking and phase-locked states in microresonator-based optical frequency combs[J]. Physics Review Letters, 2014, 112(4): 147-241.

[15] Matsko A B, Savchenkov A A, Liang W, et al.. Mode-locked Kerr frequency combs[J]. Optics Letters, 2011, 36(15): 2845-2847.

[16] Lugiato L A, Lefever R. Spatial dissipative structures in passive optical systems[J]. Physics Review Letters, 1987, 25(58): 2209-2211.

[17] Stéphane C, Miro E. Universal scaling laws of Kerr frequency combs[J]. Optics Letters, 2013, 38(11): 1790-1792.

[18] Stéphane C, Randle H G, Thibaut S, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 2013, 38(1): 37-39.

[19] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators[J]. Physics Review A, 2014, 87(5): 053852.

[20] Coen S, Haelterman M. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity[J]. Optics Letters, 2001, 26(1): 39-41.

[21] 彭璨, 姚敏玉, 张洪明, 等. 10 GHz主动锁模光纤激光器[J]. 中国激光, 2003, 30(2): 101-104.

    Peng Can, Yao Minyu, Zhang Hongming, et al.. 10 GHz actively mode-locked fiber ring laser[J]. Chinese J Lasers, 2003, 30(2): 101-104.

[22] 何京良, 郝霄鹏, 徐金龙, 等. 基于石墨烯可饱和吸收被动锁模超快全固体激光器的研究[J]. 光学学报, 2011, 31(9): 0900138.

    He Jingliang, Hao Xiaopeng, Xu Jinlong, et al.. Ultrafast mode-locked solid-state lasers with graphene saturable absorber[J]. Acta Optica Sinica, 2011, 31(9): 0900138.

徐昕, 胡晓鸿, 冯野, 刘元山, 王屹山, 魏儒义. 正色散光学微腔中光场演化过程研究[J]. 光学学报, 2016, 36(6): 0619001. Xu Xin, Hu Xiaohong, Feng Ye, Liu Yuanshan, Wang Yishan, Wei Ruyi. Spatiotemporal Evolution of the Light Field Inside the Microresonator with Normal Dispersion[J]. Acta Optica Sinica, 2016, 36(6): 0619001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!