发光学报, 2018, 39 (5): 668, 网络出版: 2018-06-29  

硅BC8量子点太阳能电池中的多重激子效应

Multiple Exciton Generation in Si BC8 Quantum Dots Solar Cell
作者单位
青海大学 新能源光伏产业研究中心, 青海 西宁 810016
摘要
多重激子效应是指在纳米半导体晶体中,量子点吸收一个高能光子而产生多个电子-空穴对的过程, 该效应可以提高单结太阳电池能量转换效率。利用碰撞电离机制和费米统计模型计算了工作温度300 K的单结硅BC8量子点太阳能电池在AM1.5G太阳光谱下的能量转换效率。对于波长在280~580 nm的入射光, 多重激子效应可以大幅增强硅BC8量子点直径d>5.0 nm的量子点太阳电池的能量转换效率。硅纳米量子点的直径d=6.3~6.4 nm时, 最大能量转换效率为51.6%。
Abstract
Multiple exciton generation(MEG) is a process whereby multiple electron-hole pairs or excitons are produced upon absorption of a single photon in semiconductor quantum dots(QDs). This effect represents a promising route to increase solar conversion efficiencies in single-junction photovoltaic cells. MEG in Si BC8 QDs is based on impact ionization and statistical Fermi. The power conversion efficiency for Si QDs solar cells was calculated under AM1.5G solar spectrum with the cell temperature at 300 K. For the incident wavelength of 280-580 nm, the power conversion efficiency can be improved by MEG effect for d>5.0 nm Si QDs. For Si BC8 QDs with d=6.3-6.4 nm, the maximum energy conversion efficiency is 51.6%.
参考文献

[1] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 32(3):510-519.

[2] SCHALLER R D, KLIMOV V I. High efficiency carrier multiplication in pbse nanocrystals: implications for solar energy conversion [J]. Phys. Rev. Lett., 2004,92(18):186601.

[3] EHRLER B, MARK W B W, AKSHAY R, et al.. Singlet exciton fission-sensitized infrared quantum dot solar cells [J]. Nano Lett., 2012, 12(2):1053-1057.

[4] BEARD M C, KNUTSEN K P, YU P R, et al.. Multiple exciton generation in colloidal silicon nanocrystals [J]. Nano Lett., 2007, 7(8):2506-2512.

[5] BEARD M C, JOHNSON J C, LUTHER J M, et al.. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon [J]. Phil. Trans. R. Soc. A, 2015, 373(2044):1-11.

[6] TIMMERMAN D, VALENTA J, DOHNALOVA K, et al.. Step-like enhancement of luminescence quantum yield of silicon nanocrystals [J]. Nat. Nanotechnol., 2011, 6:710-713.

[7] SU W A, SHEN W Z. A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application [J]. Appl. Phys. Lett., 2012, 100(7):0711111.

[8] GE D B, DOMNICH V, GOGOTSI Y. Thermal stability of metastable silicon phases produced by nanoindentation [J]. J. Appl. Phys., 2004, 95(5):2725-2731.

[9] PARK S, CHO E, SONG D, et al.. n-type silicon quantum dots and p-type crystalline silicon heteroface solar cells [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6):684-690.

[10] SEGALL M D, LINDAN P J D, PROBERT M J, et al.. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condensed Matter, 2002, 14(8):2717-2744.

[11] WIPPERMANN S, HE Y P, VRS M, et al.. Novel silicon phases and nanostructures for solar energy conversion [J]. Appl. Phys. Rev., 2016, 3(4):040807.

[12] KIM T Y, PARK N M, KIM K H, et al.. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films [J]. Appl. Phys. Lett., 2004, 85(22):5335.

[13] BUURENV T, DINH L, CHASE L, et al.. Changes in the electronic properties of Si nanocrystals as a function of particle size [J]. Phys. Rev. Lett., 1998, 80(17):3803-3806.

[14] ZHANG Q, BAYLISS S. The correlation of dimensionality with emitted wavelength and ordering of freshly produced porous silicon [J]. J. Appl. Phys., 1996, 79(3):1351-1356.

[15] PROOT J P, DELERUE C, ALLAN G. Electronic structure and optical properties of silicon crystallites: application to porous silicon [J]. Appl. Phys. Lett., 1992, 61(16):1948-1950.

[16] WANG L W, ZUNGER A. Electronic structure pseudopotential calculations of large (~1 000 atoms) Si quantum dots [J]. J. Phys. Chem., 1994, 98(8):2158-2165.

[17] WIPPERMANN S, VOROS M, ROCCA D. High-pressure core structures of si nanoparticles for solar energy conversion [J]. Phys. Rev. Lett., 2013, 110(4):046804.

[18] BURS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80(7):4403-1-7.

[19] KAYANUMA Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape [J]. Phys. Rev. B, 1988, 38(15):9797-9805.

[20] ELLINGSON R J, BEARD M C, JOHONSON J C, et al.. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J]. Nano Lett., 2005, 5(5):865-871.

[21] NOZIK A J. Multiple exciton generation in semiconductor quantum dots [J]. Chem. Phys. Lett., 2008, 547(1):3-11.

[22] NOZIK A J, BEARD M C, LUTHER J M, et al.. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells [J]. Chem. Rev., 2010, 110(11):6873-6890.

[23] SCHALLER R D, AGRANOVICH V M, KLIMOV V I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states [J]. Nat. Phys., 2005, 1(3):189-194.

[24] FERMI E. High energy nuclear events [J]. Prog. Theor. Phys., 1950, 5(4):570-583.

[25] OKSENGENDLER B L, TURAEVA N N, RASHIDOVA S S. Statistical theory of multiple exciton generation in quantum dot solar cells [J]. Appl. Solar Energy, 2009, 45(3):162-165.

[26] QARONY W, JUI Y A, DAS G D, et al.. Optical analysis in CH3NH3PbI3 and CH3NH3PbI2CI based thin-film perovskite solar cell [J]. Am. J. Energy Res., 2015, 3(2):19-24.

[27] ASTMG173-03. Standard tables for reference solar spectral irradiances direct normal and hemispherical on 37° tilted surface [EB/OL]. [2017-08-10]. https://www.astm.org.

[28] LENZE M R, UMBACH T E, LENTJES C, et al.. Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements [J]. Org. Electron., 2014, 15(12):3584-3589.

[29] BRENNER K H. Aspects for calculating local absorption with the rigorous coupled-wave method [J]. Opt. Express, 2010, 18(10):10369-10376.

[30] BERMEL P, LUO C Y, ZENG L R, et al.. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals [J]. Opt. Express, 2007, 15(25):16986-17000.

[31] CHHAJED S, SCHUBERT M F, KIM J K, et al.. Nanostructured multilayer graded-index antireflction coating for Si solar cells with broadband and omnidirectional characteristics [J]. Appl. Phy. Lett., 2008, 93(25):251108.

卢辉东, 铁生年. 硅BC8量子点太阳能电池中的多重激子效应[J]. 发光学报, 2018, 39(5): 668. LU Hui-dong, TIE Sheng-nian. Multiple Exciton Generation in Si BC8 Quantum Dots Solar Cell[J]. Chinese Journal of Luminescence, 2018, 39(5): 668.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!