发光学报, 2017, 38 (3): 281, 网络出版: 2017-04-10  

Gd3+掺杂浓度对NaErF4∶Yb纳米晶上转换荧光性能的影响

Influence of Gd3+ Doping on The Luminescence Properties of Upconverting NaErF4∶Yb Nanocrystals
作者单位
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春工业大学 材料科学高等研究院, 吉林 长春 130012
3 长春工业大学 化学与生命科学学院, 吉林 长春 130012
4 长春工业大学 基础科学学院, 吉林 长春 130012
摘要
采用温和的溶剂热法制备较强红光发射的NaErF4∶Yb,Gd上转换纳米晶, 控制Gd3+的掺杂浓度实现了晶相和尺寸可控以及上转换荧光的增强。X射线衍射谱(XRD)、透射电子显微镜图像(TEM)和上转换发射光谱结果分析表明, Gd3+掺杂可以有效地促进NaErF4纳米晶的晶相由立方相向六角相转变, 并且减小纳米粒子的尺寸。随着Gd3+掺杂浓度的上升, 上转换荧光强度明显增大。当Gd3+摩尔分数为25%时, 样品的上转换荧光强度达到最大。同时, 研究了在980 nm 近红外激光激发下, Yb3+与Er3+间有效的能量传递以及上转换发光机制。
Abstract
Upconversion NaErF4∶Yb,Gd nanocrystals with bright red emissions were prepared via a facile solvothermal method. The crystalline phase, size and the relative intensity of upconversion luminescence can be simultaneously manipulated by adjusting Gd3+ ions contents. The introduction of Gd3+ can effectively promote the cubic to hexagonal phase transformation, size reduction and obviously upconversion luminescence (UCL) intensity improvement of NaErF4∶Yb,Gd nanocrystals. XRD, TEM and UCL spectra results reveal that the sample co-doped with 25% Gd3+ ions (mole fraction) of NaErF4∶Yb system exhibits the optimized structural and optical properties. Meanwhile, the mechanism involving upconverting photon excitation and energy transfer between Yb3+ ions and Er3+ ions were investigated under the excitation of 980 nm diode laser.
参考文献

[1] SHEN J, ZHAO L, HAN G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy[J]. Adv. Drug Deliv. Rev., 2013, 65(5):744-755.

[2] 付作岭, 董晓睿, 盛天琦, 等. 纳米晶体中稀土离子的发光性质及其变化机理研究[J]. 中国光学, 2015, 8(1): 139-146.

    FU Z L, DONG X R, SHENG T Q, et al.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals[J]. Chin. Opt., 2015, 8(1):139-146. (in Chinese)

[3] LIU Y S, TU D T, ZHU H M, et al.. Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection[J]. Nanoscale, 2013, 5(4):1369-1384.

[4] CHEN G Y, SHEN J, OHULCHANSKYY T Y, et al.. (α-NaYbF4∶Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging[J]. ACS Nano, 2012, 6(9):8280-8287.

[5] SANDROCK T, SCHEIFE H, HEUMANN E, et al.. High-power continuous-wave upconversion fiber laser at room temperature[J]. Opt. Lett., 1997, 22(11):808-810.

[6] WONG H T, TSANG M K, CHAN C F, et al.. In vitro cell imaging using multifunctional small sized KGdF4∶Yb3+, Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process[J]. Nanoscale, 2013, 5(8):3465-3473.

[7] LI L, YANG Y L, FAN R Q, et al.. Conductive upconversion Er, Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells[J]. ACS Appl. Mater. Interf., 2014, 6(11):8223-8229.

[8] ZHOU H, MOUZON J, FARZANEH A, et al.. Colloidal defect-free silicalite-1 single crystals: preparation, structure characterization, adsorption, and separation properties for alcohol/water mixtures[J]. Langmuir, 2015, 31(30):8488-8494.

[9] LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J]. Adv. Mater., 2008, 20(24):4765-4769.

[10] GAI S, LI C X, YANG P P, et al.. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chem. Rev., 2014, 114(4):2343-2389.

[11] LI L, GREEN K, HALLEN H, et al.. Enhancement of single particle rare earth doped NaYF4∶Yb, Er emission with a gold shell[J]. Nanotechnology, 2015, 26(2):025101.

[12] CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J]. Biomaterials, 2008, 29(7):937-943.

[13] ZOU W Q, VISSER C, MADURO J A, et al.. Broadband dye-sensitized upconversion of near-infrared light[J]. Nat. Photon., 2012, 6(8):560-564.

[14] WANG H B, YI Z G, RAO L, et al.. High quality multi-functional NaErF4 nanocrystals: structure-controlled synthesis, phase-induced multi-color emissions and tunable magnetic properties[J]. J. Mater. Chem. C, 2013, 1(35):5520-5526.

[15] BOYER J C, VETRONE F, CUCCIA L A, et al.. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors[J]. J. Am. Chem. Soc., 2006, 128(23):7444-7445.

[16] WANG F, LIU X G. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17):5642-5643.

[17] NIU N, YANG P P, HE F, et al.. Tunable multicolor and bright white emission of one-dimensional NaLuF4∶Yb3+, Ln3+(Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures[J]. J. Mater. Chem., 2012, 22(21):10889-10899.

[18] WANG H B, LU W, ZENG T M, et al.. Multi-functional NaErF4∶Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging[J]. Nanoscale, 2014, 6(5):2855-2860.

[19] DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications[J]. Chem. Soc. Rev., 2015, 44(6):1608-1634.

[20] 胡荣璇, 王慧云, 郑彤, 等. Gd3+掺杂对NaYF4∶Yb3+, Tm3+/ Er3+纳米材料上转换荧光性能的影响[J]. 发光学报, 2015, 36(1):20-26.

    HU R X, WANG H Y, ZHENG T, et al.. Influence of Gd3+ doping on the upconversion luminescence properties of NaYF4∶Yb3+, Tm3+/Er3+ nanoparticles[J]. Chin. J. Lumin., 2015, 36(1):20-26. (in Chinese)

[21] NA H, WOO K, LIM K, et al.. Rational morphology control of β-NaYF4∶Yb, Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping[J]. Nanoscale, 2013, 5(10):4242-4251.

[22] WANG X, ZHUANG J, PENG Q, et al.. A general strategy for nanocrystal synthesis[J]. Nature, 2005, 437(7055):121-124.

[23] TANG J, CHEN L, LI J, et al.. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4∶Yb, Er nanocrystals[J]. Nanoscale, 2015, 7(35):14752-14759.

[24] WANG F, HAN Y, LIM C S, et al.. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284):1061-1065.

[25] WANG F, LIU X G. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17):5642-5643.

[26] RAMASAMY P, CHANDRA P, RHEE S W, et al.. Enhanced upconversion luminescence in NaGdF4∶Yb, Er nanocrystals by Fe3+ doping and their application in bioimaging[J]. Nanoscale, 2013, 5(18):8711-8717.

[27] SUYVER J F, AEBISCHER A, BINER D, et al.. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion[J]. Opt. Mater., 2005, 27(6):1111-1130.

[28] SUYVER J F, GRIMM J, VAN VEEN M K, et al.. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+[J]. J. Lumin., 2006, 117(1):1-12.

[29] BANSKI M, PODHORODECKI A, MISIEWICZ J, et al.. Selective excitation of Eu3+ in the core of small β-NaGdF4 nanocrystals[J]. J. Mater. Chem. C, 2013, 1(4):801-807.

谢婉莹, 安西涛, 酒俊霞, 李静, 冷静, 陈力. Gd3+掺杂浓度对NaErF4∶Yb纳米晶上转换荧光性能的影响[J]. 发光学报, 2017, 38(3): 281. XIE Wan-ying, AN Xi-tao, JIU Jun-xia, LI Jing, LENG Jing, CHEN Li. Influence of Gd3+ Doping on The Luminescence Properties of Upconverting NaErF4∶Yb Nanocrystals[J]. Chinese Journal of Luminescence, 2017, 38(3): 281.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!