光学学报, 2013, 33 (9): 0928001, 网络出版: 2013-08-27   

高空透射式光学遥感器热控设计及试验验证

Thermal Control Design and Proof Test of Altitude Transmissive Optical Sensor
作者单位
1 中国科学院长春光学精密机械与物理研究所中国科学院航空光学成像与测量重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
为确保工作在高空复杂环境下的光学遥感器获得高分辨率、高质量的目标图像,对透射式高空光学遥感器的热控制技术进行了研究。分析了光学遥感器的结构特点及航摄时的外界热环境,建立了光学遥感器的热交换模型,详细计算了传导换热、对流换热系数、气动热等热边界条件。针对该光学遥感器的热控指标,详细阐述了热设计方案。利用IDEAS-TMG软件进行了瞬态热仿真分析,并进行了热平衡试验和热光学试验。分析与试验结果表明,在模拟的高空低温低压环境下,2 h内透镜组温度水平为20 ℃±1.5 ℃,轴向温差不大于3.1 ℃,径向温差不大于1.9 ℃,CCD组件温度范围为20 ℃~29.4 ℃,均满足热控指标要求;照相分辨率为51.5 lp/mm,满足设计指标要求。分析与试验结果证实了设计方案的合理性与有效性。该研究方法和技术路线可为其他高空光学遥感器热控设计提供一定的参考。
Abstract
In order to ensure the optical sensor working in altitude complex environment could gain the high resolution and high quality image, the thermal control design is presented. The design feature and thermal environment are analyzed, and the heat-transfer model is established. The coefficient of heat convection and aerodynamic heat are calculated in detail. According to the requirements of thermal control, the method of thermal control design is put forward.The transient thermal analysis is simulated with the IDEAS-TMG software, and the thermal balance tests and the thermal-optical tests are carried out to validate the design. The results of the simulation and tests show that the temperature level of lens component is 20 ℃±1.5 ℃ in 2 h, the axial temperature difference of lens component is no more than 3.1 ℃, the radial temperature difference of lens component is no more than 1.9 ℃, and the variation range of CCD component temperature is 20 ℃~29.4 ℃, satisfying the requirements. The photographic resolution of optical sensor is 51.5 lp/mm, also satisfying the design requirement. The results show that the thermal control design is feasible and reasonable. The method of thermal control design and tests discussed in this paper provides a certain reference to thermal design of other aerial remote sensor.
参考文献

[1] Paul R Yoder, Jr. 光机系统设计[M]. 周海宪,程云芳 译. 北京: 机械工业出版社, 2008. 750-756.

    Paul R Yoder, Jr. Opto-Mechanical Systems Design [M]. Zhou Haixian, Cheng Yunfang, Transl, Beijing: China Machine Press, 2008. 750-756.

[2] 杨文刚, 余雷, 陈荣利. 高分辨率空间相机精密热控设计及验证[J]. 光子学报, 2009, 38(9): 2364-2367.

    Yang Wengang, Yu Lei, Chen Rongli. Precise thermal control design and validation for high resolution space camera [J]. Acta Photonica Sinica, 2009, 38(9): 2364-2367.

[3] 石进峰, 吴清文, 张建萍. 高空高速航空相机光学窗口的热光学分析[J]. 光学学报, 2012, 32(4): 0422004.

    Shi Jinfeng, Wu Qingwen, Zhang Jianping. Thermal-optical analysis for optical window of high-altitude and high-speed aerial camera [J]. Acta Optica Sinica, 2012, 32(4): 0422004.

[4] M Bahrami, M M Yovanovich, J R Culham. Thermal contact resistance at low contact pressure: effect of elastic deformation [J]. International J Heat and Mass Transfer, 2005, 48(16): 3284-3293.

[5] Y G Lee, D M Kim, C H Yeom. Development of Korean high altitude platform systems [J]. International J Wireless Information Networks, 2006, 13(1): 31-42.

[6] 吴雪峰. 临近空间可见光相机热控制技术研究 [D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2010.

    Wu Xuefeng. Study on Thermal Control of a Near Space Camera [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010.

[7] J D Anderson. Hypersonic and High Temperature Gas Dynamics [M]. New York: McGraw-Hill Book Company, 1988.

[8] 吴雪峰, 丁亚林, 吴清文. 临近空间光学遥感器热设计[J]. 光学 精密工程, 2010, 18(5): 1159-1165.

    Wu Xuefeng, Ding Yalin, Wu Qingwen. Thermal design for near space optical remote sensor [J]. Optics and Precision Engineering, 2010, 18(5): 1159-1165.

[9] 钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2009.

    Qian Yiji. Aerodynamics [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2009.

[10] 李延伟, 杨洪波, 程志峰, 等. 航空遥感器光学窗口光机热一体化设计[J]. 红外与激光工程, 2012, 41(8): 2102-2106.

    Li Yanwei, Yang Hongbo, Cheng Zhifeng, et al.. Thermal/structural/optical integrated design for optical window in aerial remote sensor [J]. Infrared and Laser Engineering, 2012, 41(8): 2102-2106.

[11] 邓丽君. 一种临近空间浮空器热控系统的研究 [D]. 南京: 南京理工大学, 2009.

    Deng Lijun. Study on Thermal Control System of a Near Space Vehicle [D]. Nanjing: Nanjing University of Science and Technology, 2009.

[12] 李延伟, 杨洪波, 张洪文, 等. 相变热控在高空光学遥感器CCD组件中的应用[J]. 红外与激光工程, 2012, 41(11): 3016-3020.

    Li Yanwei, Yang Hongbo, Zhang Hongwen, et al.. Application of phase change thermal control in CCD assembly of altitude optical sensor [J]. Infrared and Laser Engineering, 2012, 41(11): 3016-3020.

[13] 陈立恒, 李延春, 罗志涛, 等. 空间相机大功率CCD器件的热设计与热试验[J]. 光学 精密工程, 2011, 19(9): 2117-2122.

    Chen Liheng, Li Yanchun, Luo Zhitao, et al.. Thermal design and testing of CCD for space camera [J]. Optics and Precision Engineering, 2011,19(9): 2117-2122.

[14] 郭亮, 吴清文, 颜昌翔. 空间光谱成像仪热设计及其分析与验证[J]. 光学 精密工程, 2011, 19(6): 1272-1280.

    Guo Liang, Wu Qingwen, Yan Changxiang. Thermal design of space spectral imaging apparatus and its analysis and verification [J]. Optics and Precision Engineering, 2011, 19(6): 1272-1280.

[15] 陈勇, 郭隆德, 岳茂雄, 等. 计算流体成像技术重构方法及其应用[J]. 光学学报, 2012, 32(7): 0701001.

    Chen Yong, Guo Longde, Yue Maoxiong, et al.. Reconstruction methods and application of computational fluid imaging technology [J]. Acta Optica Sinica, 2012, 32(7): 0701001.

李延伟, 远国勤, 杨洪波, 张洪文, 刘伟毅, 丁亚林. 高空透射式光学遥感器热控设计及试验验证[J]. 光学学报, 2013, 33(9): 0928001. Li Yanwei, Yuan Guoqin, Yang Hongbo, Zhang Hongwen, Liu Weiyi, Ding Yalin. Thermal Control Design and Proof Test of Altitude Transmissive Optical Sensor[J]. Acta Optica Sinica, 2013, 33(9): 0928001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!