中国激光, 2016, 43 (9): 0902006, 网络出版: 2018-05-25   

皮秒激光熔覆硼掺杂硅纳米浆料的实验研究

B-Doped Nano-Si-Paste by Picosecond Laser Cladding
作者单位
1 南京航空航天大学机电学院, 江苏 南京 210016
2 盐城工学院机械工程学院, 江苏 盐城 224051
3 中电电气(南京)光伏有限公司, 江苏 南京 211100
摘要
采用硼掺杂的硅纳米颗粒和有机载体混合配制的硅浆料作为原料,以标准太阳能电池工艺中的预处理硅片作为基片,在硅片背面丝网印刷硅浆料,烘干后形成硅纳米薄膜,经皮秒激光熔覆形成掺杂的硅熔覆层,同时硼元素扩散进入硅基片。采用激光形貌仪、扫描电子显微镜、二次离子质谱等手段分析了熔覆层的组织结构和硼元素的掺杂情况。结果表明,皮秒激光形成的硅熔覆层组织均匀致密,与基体之间结合紧密,无裂纹、孔洞等缺陷。硅熔覆层中的硼掺杂浓度最高达到3×1019 atom/cm3,在硅基体内扩散深度为0.5~1 μm。在中电电气(南京)光伏有限公司太阳能电池生产线上进行了电池制备实验,平均光电转换效率达到20.3%。
Abstract
Silicon paste prepared by boron doped Si nanoparticles and organic carriers is used as the source. The Si wafers from the standard process of solar cells are used as the substrate. The Si paste is fully screen-printed on the preprocessed Si rear surface and dried, and then a homogenous B-doped Si cladding layer is formed by picosecond laser. During the process, B diffuses into the substrate. The structure of Si cladding layer and doping performance of B element are observed by laser scanning microscope, scanning electron microscope, and secondary ion mass spectroscopy. The results show that the Si cladding layer formed by picosecond laser is uniform and dense without cracks and voids. The highest B concentration in the cladding layer is about 3×1019 atom/cm3, and B is doped into the Si substrate for the depth of 0.5-1 μm. Cells with an average efficiency of 20.3% are fabricated on China Sunergy′s production line.
参考文献

[1] Green M A. The passivated emitter and rear cell (PERC): From conception to mass production[J]. Progress in Photovoltaics Research & Applications, 2015, 143: 190-197.

[2] Kim M, Kim D, Kim D, et al. Analysis of laser-induced damage during laser ablation process using picosecond pulse width laser to fabricate highly efficient PERC cells[J]. Solar Energy, 2014, 108: 101-106.

[3] Lin D, Abbott M, Lu P H, et al. Incorporation of deep laser doping to form the rear localized back surface field in high efficiency solar cells[J]. Solar Energy Materials & Solar Cells, 2014, 130: 83-90.

[4] 王春梅. 硼扩散片制备技术研究[D]. 天津: 天津大学, 2008: 13-16.

    Wang Chunmei. Study on boron diffused silicon wafers[D]. Tianjin: Tianjin University, 2008: 13-16.

[5] Kluska S, Granek F. High-efficiency silicon solar cells with boron local back surface fields formed by laser chemical processing[J]. IEEE Electron Device Letters, 2011, 32(9): 1257-1259.

[6] Das A, Kim D S, Nakayashiki K, et al. Boron diffusion with boric acid for high efficiency silicon solar cells[J]. Journal of the Electrochemical Society, 2010, 157(6): 684-687.

[7] Vinodkumar M, Korot K, Limbachiya C, et al. Screening-corrected electron impact total and ionization cross sections for boron trifluoride (BF3) and boron trichloride (BCl3)[J]. Journal of Physics B, 2008, 41(24): 245202.

[8] Kim M, Kim D, Kim D, et al. Impact of laser pulse width on laser ablation process of high performance PERC cells[J]. Solar Energy, 2014, 110: 208-213.

[9] 刘春阳, 孙立东, 傅星, 等. 355 nm 纳秒脉冲激光在硅表面照射形成微结构及其荧光检测[J]. 中国激光, 2010, 37(8): 2139-2142.

    Liu Chunyang, Sun Lidong, Fu Xing, et al. Si microstructure fabricated by 355 nm nanosecond pulsed laser and its fluorescence microscopy study[J]. Chinese J Lasers, 2010, 37(8): 2139-2142.

[10] 王克甫, 张秋慧. 高能纳秒激光烧蚀单晶硅的微观结构[J]. 激光杂志, 2012, 33(5): 36-37.

    Wang Kefu, Zhang Qiuhui. The ablation microstructures of mono crystalline silicon by high power nanosecond laser[J]. Laser Journal, 2012, 33(5): 36-37.

[11] Bhr M, Heinrich G, Stolberg K P, et al. Ablation of dielectrics without substrate damage using ultra-short-pulse laser systems[C]. Proceedings of the 25th EUPVSEC, Valencia, 2010: 2490-2496.

[12] 杨焕, 黄珊, 段军, 等. 飞秒与纳秒激光刻蚀单晶硅对比研究[J]. 中国激光, 2013, 40(1): 0103003.

    Yang Huan, Huang Shan, Duan Jun, et al. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser[J]. Chinese J Lasers, 2013, 40(1): 0103003.

[13] 金方圆, 陈波, 鄂书林, 等. 皮秒激光烧蚀Al膜的理论分析与实验验证[J]. 发光学报, 2014, 35(6): 754-760.

    Jin Fangyuan, Chen Bo, E Shulin, et al. Theory analysis and experiment verification on picosecond laser ablation of Al film[J]. Chinese Journal of Luminescence, 2014, 35(6): 754-760.

[14] 侯敏. 短脉冲及超短脉冲激光硅表面微加工研究[D]. 天津: 天津大学, 2008: 9-22.

    Hou Min. Study of micromachining on silicon using short and ultrashort laser pulse[D]. Tianjin: Tianjin University, 2008: 9-22.

[15] Goldstein A N. The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors[J]. Applied Physics A, 1996, 62(1): 33-37.

[16] 董世运, 马运哲, 徐滨士, 等. 激光熔覆材料研究现状[J]. 材料导报, 2006, 20(6): 5-9.

    Dong Shiyun, Ma Yunzhe, Xu Binshi, et al. Current status of material for laser cladding[J]. Materials Review, 2006, 20(6): 5-9.

[17] Hong J, Wang W, Shi B, et al. Screen-printed Si paste for localized B doping in a back surface field[J]. IEEE Electron Device Letters, 2015, 36(1): 8-10.

[18] 刘强, 李扬聪, 周昕, 等. 激光脉冲输出能量与脉冲宽度相互关系特性实验研究[J]. 激光杂志, 2009, 30(1): 20-21.

    Liu Qiang, Li Yangcong, Zhou Xin, et al. Study the relationship characteristic between laser′ s signal pulse energy and skeleton in experiment[J]. Laser Journal, 2009, 30(1): 20-21.

[19] 李俊昌. 激光的衍射及热作用计算[M]. 北京: 科学出版社, 2002: 58-68.

[20] 陈家璧, 彭润玲. 激光原理及应用[M]. 北京: 电子工业出版社, 2010: 63-69.

[21] 鲍钢飞. 基础物理学[M]. 北京: 高等教育出版社, 2007: 420-430.

洪捐, 宣容卫, 黄海冰, 黄因慧, 汪炜. 皮秒激光熔覆硼掺杂硅纳米浆料的实验研究[J]. 中国激光, 2016, 43(9): 0902006. Hong Juan, Xuan Rongwei, Huang Haibing, Huang Yinhui, Wang Wei. B-Doped Nano-Si-Paste by Picosecond Laser Cladding[J]. Chinese Journal of Lasers, 2016, 43(9): 0902006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!