光学学报, 2012, 32 (10): 1016004, 网络出版: 2012-08-08   

Ge30Sb8Se62硫系玻璃的制备及其10.6 μm低损耗空芯光子带隙光纤的设计

Preparation of Ge30Sb8Se62 Chalcogenide Glass and Designing for a Low-Loss Hollow-Core Photonic Crystal Fiber at 10.6 μm
作者单位
宁波大学信息科学与工程学院红外材料与器件实验室, 浙江 宁波 315211
摘要
硫系玻璃光子晶体光纤在中远红外激光传输领域具有广阔的应用前景。制备了红外波段具有优良透过特性的Ge30Sb8Se62硫系玻璃,并以此为基质材料设计了一种适合于高功率中红外激光传输的带隙型光子晶体光纤。利用平面波展开法和有限元法分析了不同结构下该光纤的光子带隙、模场面积和限制损耗特性。通过优化光纤的结构参数,获得了在10.6 μm处限制损耗小于0.1 dB/m的大模场(模场面积大于100 μm2)光子晶体光纤。
Abstract
Chalcogenide glass photonic crystal fiber is expected to have important applications in the field of mid-infrared laser transmission. The Ge30Sb8Se62 chalcogenide glass with excellent transparency in mid-infrared region is prepared. Based on this chalcogenide glass, a band-gap photonic crystal fiber is designed, which suits high power laser transmission. With plane wave expansion method and finite element method, photonic band gap, mode-field area and confinement loss of the designed photonic crystal fiber are systematically studied. By optimizing the structural parameters of fiber, photonic crystal fiber with confinement loss less than 0.1 dB/m and effective mode-field area larger than 100 μm2 at 10.6 μm is obtained.
参考文献

[1] S. Février, D. D. Gaponov, P. Roy et al.. High-power photonic-bandgap fiber laser[J]. Opt. Lett., 2008, 33(9): 989~991

[2] T. Ritari, J. Tuominen, H. Ludvigsen et al.. Gas sensing using air-guiding photonic bandgap fibers[J]. Opt. Express, 2004, 12(17): 4080~4087

[3] K. Uchiyama, T. Morioka, M. Saruwatari et al.. Error free all-optical demultiplexing using a chalcogenide glass fibre based nonlinear optical loop mirror[J]. Electron. Lett., 1996, 32(17): 1601~1602

[4] 王伟, 侯蓝田. 光子晶体光纤的现状和发展[J]. 激光与光电子学进展, 2008, 45(2): 43~58

    Wang Wei, Hou Lantian. Present situation and future development in photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2008, 45(2): 43~58

[5] 高永芳, 时家明, 赵大鹏 等. 一种基于光子晶体的远红外与10.6 μm激光兼容伪装材料的设计与制备[J]. 光学学报, 2011, 31(6): 0616001

    Gao Yongfang, Shi Jiaming, Zhao Dapeng et al.. Design and fabrication of a kind of far infrared and 10.6 μm laser band compatible camouflage material based on photonic crystals[J]. Acta Optica Sinica, 2011, 31(6): 0616001

[6] 於杏燕, 戴世勋, 周亚训 等. 掺铒硫系玻璃光纤的中红外增益特性模拟研究[J]. 中国激光, 2012, 39(1): 0105003

    Yu Xingyan, Dai Shixun, Zhou Yaxun et al.. Theoretical studies on mid-infrared gain characteristics of erbium-doped chalcogenide glass fibers[J]. Chinese J. Lasers, 2012, 39(1): 0105003

[7] 戴世勋, 於杏燕, 张巍 等. 硫系玻璃光子晶体光纤研究进展[J]. 激光与光电子学进展, 2011, 48(9): 090602

    Dai Shixun, Yu Xingyan, Zhang Wei et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602

[8] 王训四, 梁小伟, 朱明星 等. KCl对GeS2-Ga2S3硫系玻璃光学性能的影响[J]. 光学学报, 2010, 30(7): 2047~2052

    Wang Xunsi, Liang Xiaowei, Zhu Mingxing et al.. Optic effect of KCl on GeS2-Ga2S3 chalcogenide glasses[J]. Acta Optica Sinica, 2010, 30(7): 2047~2052

[9] T. M. Monro, Y. D. West, D. W. Hewak et al.. Chalcogenide holey fibres[J]. Electron. Lett., 2000, 36(24): 1998~2000

[10] J. Knight, J. Broeng, T. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476~1478

[11] R. Cregan, B. Mangan, J. Knight et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537~1539

[12] F. Désévédavy, G. Renversez, J. Troles et al.. Chalcogenide glass hollow core photonic crystal fibers[J]. Optical Materials, 2010, 32(11): 1532~1539

[13] H. Nguyen, K. Finsterbusch, D. Moss et al.. Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre[J]. Electron. Lett., 2006, 42(10): 571~572

[14] 郭夏锐, 杨德兴, 赵建林 等. 光子晶体光纤弯曲损耗特性研究[J]. 光子学报, 2007, 36(10): 1817~1820

    Guo Xiarui, Yang Dexing, Zhao Jianlin et al.. Experimental investigation on the bending loss properties of photonic crystal fibers[J]. Acta Photonica Sinica, 2007, 36(10): 1817~1820

[15] M. Tefelska, S. Ertman, T. Wolinski et al.. Large area multimode photonic band gap propagation in photonic liquid crystal fiber[J]. IEEE Photon. Technol. Lett., 2012, 24(8): 631~633

[16] R. J. Noble, J. E. Spencer, B. T. Kuhlmey. Hollow-core photonic band gap fibers for particle acceleration[J]. Phys. Rev. Special Topics-Accelerators and Beams, 2011, 14(12): 121303

[17] L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina et al.. Photonic-crystal-fiber platform for multicolor multilabel neurophotonic studies[J]. Appl. Phys. Lett., 2011, 98(25): 253706

[18] L. Chen, G. J. Pearce, T. A. Birks et al.. Guidance in Kagome-like photonic crystal fibres I: analysis of an ideal fibre structure[J]. Opt. Express, 2011, 19(7): 6945~6956

[19] L. Zhang, S. G. Li, Y. Y. Yao et al.. Properties of high birefringence chalcogenide glass holey fibre for mid-infrared transparency[J]. J. Opt., 2010, 12(3): 035207

[20] T. Engeness, M. Ibanescu, S. Johnson et al.. Dispersion tailoring and compensation by modal interactions in OmniGuide fibers[J]. Opt. Express, 2003, 11(10): 1175~1196

[21] J. Lgsgaard. Zero-velocity solitons in high-index photonic crystal fibers[J]. J. Opt. Soc. Am. B, 2011, 28(1): 37~44

[22] S. G. Li, H. S. Zhou, G. B. Yin. Bandgaps of the chalcogenide glass hollow-core photonic crystal fiber[J]. Chin. Phys. Lett., 2011, 28(11): 114204

[23] A. F. Oskooi, J. Joannopoulos, S. G. Johnson. Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers[J]. Opt. Express, 2009, 17(12): 10082~10090

[24] 兰建花, 徐铁峰, 聂秋华 等. 氯化铯对GeSe2-Sb2Se3玻璃的析晶及红外透过性能的影响[J]. 硅酸盐学报, 2009, 37(4): 568~573

    Lan Jianhua, Xu Tiefeng, Nie Qiuhua et al.. Effect of CsCl content on crystallization characteristics and properties of infrared transmitting of GeSe2-Sb2Se3 glasses[J]. J. Chinese Ceramic Society, 2009, 37(4): 568~573

[25] 孙杰, 聂秋华, 王训四 等. 新型远红外Ge-Te-Se-Sn硫系玻璃的热学与光学性质研究[J]. 光学学报, 2011, 31(11): 1116003

    Sun Jie, Nie Qiuhua, Wang Xunsi et al.. Reaserch on thermal and optical properties of novel Ge-Te-Se-Sn far infrared transmitting chalcogenide glasses[J]. Acta Optica Sinica, 2011, 31(11): 1116003

[26] J. Wang, E. Vogel, E. Snitzer. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3): 187~203

[27] R. Weiblen, A. Docherty, J. Hu et al.. Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers[J]. Opt. Express, 2010, 18(25): 26666~26674

[28] F. Brechet, J. Marcou, D. Pagnoux et al.. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method[J]. Opt. Fiber Technol., 2000, 6(2): 181~191

[29] J. Meng, L. T. Hou, G. Y. Zhou et al.. Analysis of the special hollow-core photonic crystal fibre by finite element method[J]. Chin. Phys. B, 2008, 17 (10): 3779~3784

刘永兴, 张培晴, 许银生, 王训四, 戴世勋, 聂秋华, 徐铁峰. Ge30Sb8Se62硫系玻璃的制备及其10.6 μm低损耗空芯光子带隙光纤的设计[J]. 光学学报, 2012, 32(10): 1016004. Liu Yongxing, Zhang Peiqing, Xu Yinsheng, Wang Xunsi, Dai Shixun, Nie Qiuhua, Xu Tiefeng. Preparation of Ge30Sb8Se62 Chalcogenide Glass and Designing for a Low-Loss Hollow-Core Photonic Crystal Fiber at 10.6 μm[J]. Acta Optica Sinica, 2012, 32(10): 1016004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!