激光与光电子学进展, 2007, 44 (12): 28, 网络出版: 2007-12-15  

纳米光存储薄膜结构的光学性质

Optical Properties of Super-Resolution Near-Field Structure for Optical Nano-Storage
作者单位
中国科学院上海光学精密机械研究所, 上海 201800
摘要
近场超分辨纳米薄膜结构可以突破衍射极限实现纳米尺寸信息存储,是下一代海量存储技术的重要方案之一,也是纳米光子学研究中的热点。纳米膜层结构基于激光作用下的非线性局域光学效应实现超分辨。分析了超分辨近场薄膜结构突破衍射极限的光学原理,对超分辨纳米薄膜结构的表面等离子体激发特性、非线性光学特性、近场光学特性和超透镜效应等重要光学性质的最新研究进展做了系统介绍。
Abstract
Super-resolution near-field multilayer structure can overcome the diffraction limit and promote optical nano-storage, is regarded as a promising scheme for mass storage and becomes a hotspot in nano-photonics. The super resolution is realized by the nonlinear local optical effect in the nano-film irradiated by laser. The principle how the super-resolution near-field multilayer structure overcomes the diffraction limit is introduced. The latest research progress on the important optical properties of the super-resolution nano-film, such as surface plasmon excitation, nonlinear optical property, near-field optical property and superlens effect, is extensively studied.
参考文献

[1] 干福熹,高密度光数据存储技术的发展[J]. 物理,1999, 28(6):323~332

[2] . Far-field imaging by the Veselago lens made of a photonic crystal[J]. J. Opt. Soc. Am. B, 2006, 23(3): 490-497.

[3] . Imaging properties of dielectric photonic crystal slabs for large object distances[J]. Opt. Exp., 2006, 14(15): 6755-6765.

[4] . R Zakharian, J. V Moloney, M Mansuripur. Surface plasmon polaritons on metallic surfaces[J]. Opt. Exp., 2007, 15(1): 183-197.

[5] 瞿青玲,王阳,干福熹. 超分辨率近场结构中二元共晶合金掩膜的工作机制. [J]. 中国激光,2007, 34(4):530~533

[6] . Nanoillumination based on self-focus and field enhancement inside a subwavelength metallic structure[J]. Appl. Phys. Lett., 2007, 90: 011501.

[7] . . Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett., 2000, 84(18): 4184-4187.

[8] 郑建亚,于晓明,张天浩 等. 用扫描近场光学显微镜技术研究金膜表面等离子体共振[J]. 光学学报, 2006, 26(8):1236~1239

[9] . . Near-field magnato-optics and high density data storage[J]. Appl. Phys. Lett., 1992, 61(2): 142-144.

[10] . . Near-field optical data storage using a solid immersion lens[J]. Appl. Phys. Lett., 1994, 65(4): 388-390.

[11] W C kim, H Choi, T-S Song et al.. Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1363~1365

[12] M Shinoda, K Saito, T Kondo et al.. High-density near-field readout using diamond solid immersion lens[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1311~1313

[13] . Tominaga, T. Nakano, N. Atoda. An approach for recording and readout beyond the diffraction limit with an Sb thin film[J]. Appl. Phys. Lett., 1998, 73(15): 2078-2080.

[14] H Ukita, Y Ueda, M Sasaki. Read/Write mechanism for a scattered type super-resolution near-field structure using an AgOx mask layer and the smallest mark reproduced[J]. Jpn. J. Appl. Phys., 2005, 44(1A):197~201

[15] . . Read power sensitivity in energy-gap-induced super-resolution read-only-memory dis with germanium reflective film[J]. Jpn. J. Appl. Phys., 2007, 46(1): 235-237.

[16] N Takamori, M Yamamoto, G Mori et al.. Dual-layer energy-gap-induced super-resolution read-only-memory disc using ZnO film[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1366~1369

[17] S Y Kim, S U park, X Z Li et al.. Enhanced readout signal of elliptic-bubble super resolution near field structure by temperature-dependent complex refractive index of phase-change medium[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1390~1393

[18] . . Thermal-induced optical properties of a PdOx mask layer in an optical data storage system with a superresolution near-field strucutre[J]. Opt. Exp., 2003, 11(21): 2646-2853.

[19] T-T Yen, J-H Wang, T-E Hsieh et al.. Superreolution structure optical disk with semiconductor-doped glass mask layer containing GdSe nanoparticles[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1394~1397

[20] H Kim, J Kim, C Park et al.. Random signal characteristics of super resolution near field structure read-only memory disc[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1374~1378

[21] L P Shi, T C Chong, X Hu et al.. Investigation on mechanism of aperture-type super-resolution near-field fptical disk[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1385~1389

[22] H Raether. Surface plasmon on smooth and rough surfaces and on gratings, Berlin: Springer Verlag, 1988

[23] . Probing the near fields of the super-resolution near-field optical structure[J]. Appl. Phys. Lett., 2000, 77(10): 1413-1415.

[24] . . Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer[J]. J. Appl. Phys., 2002, 91(12): 10209-10211.

[25] . Approach for imaging optical super-resolution based on Sb films[J]. Appl. Phys. Lett., 2003, 82(10): 1521-1523.

[26] . Optical transmission larger than 1(T>1) through ZnS-SiO2/AgOx/ZnS-SiO2 sandwiched thin films[J]. Appl. Phys. Lett., 2006, 89: 101917.

[27] . Sheik-bahae, A A Said, E W Van Stryland. High-sensitivity, single beam n2 measurements[J]. Opt. Lett., 1989, 14(17): 955-957.

[28] Y L Chou, C T Chuang, Y M Chang et al.. Characterization of nonlinear optical properties of silver oxide super resolution near-field structures by Z-scan measurements[J]. Jpn. J. Appl. Phys., 2004, 43(8A):5259~5261

[29] U J Fu, Y L Lu, P H Chang et al.. Z-scan study of nonlinear optical coupling of PtOx ang Ge2Sb2Te5 of near-field optical recording structure[J]. Jpn. J. Appl. Phys., 2006, 45(9A):7224~7227

[30] Q Liu, T Fukaya, J Tominaga et al.. Optical properties op metal-oxide film in super-RENs[J]. Jpn. J. Appl. Phys., 2005, 44(7A):5156~5163

[31] Q Liu, J Tominaga, T Fukaya. Effect of bubble deformation on readout response in a third-generation super-resolution near-field structure disk[J]. Smart. Mater. Struct. 2006, 15:S165~S167

[32] Q Qu, Y Wang, F Gan. Numerical analysis and comparison of three metal-oxide-type super-resolution near field structures[J], Chin. Phys. Lett., 2006, 23(12):3363~3365

[33] W C Liu, M Y Ng, D P Tsai. Surface plasamon effects on the far-field signals of AgOx-type super resolution near-field structure[J]. Jpn. J. Appl. Phys., 2004, 43(7B):4713~4717

[34] . Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles[J]. Opt. Exp., 2005, 13(23): 9422-9430.

[35] J M Li, L P Shi, K G lim et al.. Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure[J]. Jpn. J. Appl. Phys., 2005, 44(5B):3620~3622

[36] J M Li, L P Shi, X S Miao et al.. Near-field characteristics and signal enhancement of super-resolution near-field structure disk with metal nanoparticles[J]. Jpn. J. Appl. Phys., 2006, 45(2B):1398~1400

[37] . Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure[J]. Opt.Commun., 2007, 269: 389-394.

[38] Y F Chau, D P Tsai, S C Chen. Deformation and plasmon effects of deformed AgOx-type super-resolution near-field structure[J]. Jpn. J. Appl. Phys., 2006, 45(9A):7228~7230

[39] . . Optical near-field simulation of Sb thin film thermal lens and its application in optical recording[J]. J. Appl. Phys., 2005, 97: 073102.

[40] F Zhou, X Gan, W Xu, F Gan. Rigorous transmittance analysis of a sub-wavelength Sb thin film lens[J]. Appl. Phys. B, 2006, 84(1-2):43~47

[41] . Optical transmission enhancement by a sub-wavelength film lens[J]. Chin. Opt. Lett., 2006, 4(1): 52-54.

[42] 瞿青玲,王阳,吴谊群 等. 近场光增强的合金薄膜元件.中国发明专利,申请号:200610116265.3

[43] . Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18): 3966-3969.

[44] . . Negative refraction and left-handed electromagnetism in microwave photonic crystals[J]. Phys. Rev. Lett., 2004, 92(12): 127401.

[45] . Experimental verification of a ngative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[46] . . Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation[J]. Appl. Phys. A, 2005, 80: 1315-1325.

[47] . . Sub-diffraction-limited optical imaging with a silver superlens[J]. Sience, 2005, 308(5721): 534-537.

[48] . Dynamic readout of subdiffraction-limited pit arrys with a silver superlens[J]. Appl. Phys. Lett., 2005, 87: 211101.

翟凤潇, 王阳, 吴谊群, 干福熹. 纳米光存储薄膜结构的光学性质[J]. 激光与光电子学进展, 2007, 44(12): 28. 翟凤潇, 王阳, 吴谊群, 干福熹. Optical Properties of Super-Resolution Near-Field Structure for Optical Nano-Storage[J]. Laser & Optoelectronics Progress, 2007, 44(12): 28.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!