光学学报, 2018, 38 (2): 0215002, 网络出版: 2018-08-30   

基于在线检测和尺度自适应的相关滤波跟踪 下载: 1161次

Correlation Filter Tracking Based on Online Detection and Scale-Adaption
作者单位
国家数字交换系统工程技术研究中心, 河南 郑州 450000
引用该论文

王艳川, 黄海, 李邵梅, 高超. 基于在线检测和尺度自适应的相关滤波跟踪[J]. 光学学报, 2018, 38(2): 0215002.

Yanchuan Wang, Hai Huang, Shaomei Li, Chao Gao. Correlation Filter Tracking Based on Online Detection and Scale-Adaption[J]. Acta Optica Sinica, 2018, 38(2): 0215002.

参考文献

[1] ChenZ, Hong ZB, Tao DC. An experimental survey on correlation filter-based tracking[OL]. Computer Science, 2015, 53( 6025): 68- 83. 10.1016/S0038-092X(00)00110-93d6266e61f844b2fcf7e5fd3a952838fhttp%3A%2F%2Fwww.oalib.com%2Fpaper%2F4052157Abstract: Over these years, Correlation Filter-based Trackers (CFTs) have aroused increasing interests in the field of visual object tracking, and have achieved extremely compelling results in different competitions and benchmarks. In this paper, our goal is to review the developments of CFTs with extensive experimental results. 11 trackers are surveyed in our work, based on which a general framework is summarized. Furthermore, we investigate different training schemes for correlation filters, and also discuss various effective improvements that have been made recently. Comprehensive experiments have been conducted to evaluate the effectiveness and efficiency of the surveyed CFTs, and comparisons have been made with other competing trackers. The experimental results have shown that state-of-art performance, in terms of robustness, speed and accuracy, can be achieved by several recent CFTs, such as MUSTer and SAMF. We find that further improvements for correlation filter-based tracking can be made on estimating scales, applying part-based tracking strategy and cooperating with long-term tracking methods.http://www.oalib.com/paper/4052157

    ChenZ, Hong ZB, Tao DC. An experimental survey on correlation filter-based tracking[OL]. Computer Science, 2015, 53( 6025): 68- 83. 10.1016/S0038-092X(00)00110-93d6266e61f844b2fcf7e5fd3a952838fhttp%3A%2F%2Fwww.oalib.com%2Fpaper%2F4052157Abstract: Over these years, Correlation Filter-based Trackers (CFTs) have aroused increasing interests in the field of visual object tracking, and have achieved extremely compelling results in different competitions and benchmarks. In this paper, our goal is to review the developments of CFTs with extensive experimental results. 11 trackers are surveyed in our work, based on which a general framework is summarized. Furthermore, we investigate different training schemes for correlation filters, and also discuss various effective improvements that have been made recently. Comprehensive experiments have been conducted to evaluate the effectiveness and efficiency of the surveyed CFTs, and comparisons have been made with other competing trackers. The experimental results have shown that state-of-art performance, in terms of robustness, speed and accuracy, can be achieved by several recent CFTs, such as MUSTer and SAMF. We find that further improvements for correlation filter-based tracking can be made on estimating scales, applying part-based tracking strategy and cooperating with long-term tracking methods.http://www.oalib.com/paper/4052157

[2] 赵高鹏, 沈玉鹏, 王建宇. 基于核循环结构的自适应特征融合目标跟踪[J]. 光学学报, 2017, 37(8): 0815001.

    赵高鹏, 沈玉鹏, 王建宇. 基于核循环结构的自适应特征融合目标跟踪[J]. 光学学报, 2017, 37(8): 0815001.

    Zhao G P, Shen Y P, Wang J Y. Adaptive feature fusion object tracking based on circulant structure with kernel[J]. Acta Optica Sinica, 2017, 37(8): 0815001.

    Zhao G P, Shen Y P, Wang J Y. Adaptive feature fusion object tracking based on circulant structure with kernel[J]. Acta Optica Sinica, 2017, 37(8): 0815001.

[3] Ma C, Xu Y, Ni B B, et al. When correlation filters meet convolutional neural networks for visual tracking[J]. IEEE Signal Processing Letters, 2016, 23(10): 1454-1458.

    Ma C, Xu Y, Ni B B, et al. When correlation filters meet convolutional neural networks for visual tracking[J]. IEEE Signal Processing Letters, 2016, 23(10): 1454-1458.

[4] Bolme DS, Beveridge JR, Draper BA, et al. Visual object tracking using adaptive correlation filters[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010: 2544- 2550.

    Bolme DS, Beveridge JR, Draper BA, et al. Visual object tracking using adaptive correlation filters[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010: 2544- 2550.

[5] Henriques JF, CaseiroR, MartinsP, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]∥Proceedings of European Conference on Computer Vision, 2012: 702- 715.

    Henriques JF, CaseiroR, MartinsP, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]∥Proceedings of European Conference on Computer Vision, 2012: 702- 715.

[6] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

[7] DanelljanM, Khan FS, FelsbergM, et al. Adaptive color attributes for real-time visual tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1090- 1097.

    DanelljanM, Khan FS, FelsbergM, et al. Adaptive color attributes for real-time visual tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1090- 1097.

[8] QiY, ZhangS, QinL, et al. Hedged deep tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4303- 4311.

    QiY, ZhangS, QinL, et al. Hedged deep tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4303- 4311.

[9] DanelljanM, HagerG, Khan FS, et al. Accurate scale estimation for robust visual tracking[C]∥Proceedings of British Machine Vision Conference, 2014: 1- 11.

    DanelljanM, HagerG, Khan FS, et al. Accurate scale estimation for robust visual tracking[C]∥Proceedings of British Machine Vision Conference, 2014: 1- 11.

[10] LiY, Zhu JK. A scale adaptive kernel correlation filter tracker with feature integration[C]∥Proceedings of European Conference on Computer Vision, 2014: 254- 265.

    LiY, Zhu JK. A scale adaptive kernel correlation filter tracker with feature integration[C]∥Proceedings of European Conference on Computer Vision, 2014: 254- 265.

[11] MaC, Yang XK, Zhang CY, et al. Long-term correlation tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5388- 5396.

    MaC, Yang XK, Zhang CY, et al. Long-term correlation tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5388- 5396.

[12] ZhangJ, MaS, SclaroffS. MEEM: Robust tracking via multiple experts using entropy minimization[C]∥Proceedings of European Conference on Computer Vision, 2014: 188- 203.

    ZhangJ, MaS, SclaroffS. MEEM: Robust tracking via multiple experts using entropy minimization[C]∥Proceedings of European Conference on Computer Vision, 2014: 188- 203.

[13] Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.

    Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.

[14] Wang Z, Vucetic S. Online training on a budget of support vector machines using twin prototypes[J]. Statistical Analysis and Data Mining, 2010, 3(3): 149-169.

    Wang Z, Vucetic S. Online training on a budget of support vector machines using twin prototypes[J]. Statistical Analysis and Data Mining, 2010, 3(3): 149-169.

[15] ScholkopfB, Smola AJ. Learning with kernels: Support vector machines, regularization, optimization, and beyond[M]. London: MIT Press, 2002: 405- 423.

    ScholkopfB, Smola AJ. Learning with kernels: Support vector machines, regularization, optimization, and beyond[M]. London: MIT Press, 2002: 405- 423.

[16] WuY, LimJ, Yang MH. Online object tracking: A benchmark[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411- 2418.

    WuY, LimJ, Yang MH. Online object tracking: A benchmark[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411- 2418.

[17] JiaX, Lu HC, Yang MH. Visual tracking via adaptive structural local sparse appearance model[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1822- 1829.

    JiaX, Lu HC, Yang MH. Visual tracking via adaptive structural local sparse appearance model[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1822- 1829.

[18] HareS, SaffariA, Torr P H S. Struck: Structured output tracking with kernels[C]∥Proceedings of IEEE International Conference on Computer Vision, 2011: 263- 270.

    HareS, SaffariA, Torr P H S. Struck: Structured output tracking with kernels[C]∥Proceedings of IEEE International Conference on Computer Vision, 2011: 263- 270.

[19] Kalal Z, Mikolajczyk K, Matas J. Tracking learning detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.

    Kalal Z, Mikolajczyk K, Matas J. Tracking learning detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.

[20] Bao CL, WuY, Ling HB, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1830- 1837.

    Bao CL, WuY, Ling HB, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1830- 1837.

[21] 罗会兰, 杜芳芳, 孔繁胜. 像素点特征加权的尺度自适应跟踪算法[J]. 通信学报, 2015, 36(10): 200-211.

    罗会兰, 杜芳芳, 孔繁胜. 像素点特征加权的尺度自适应跟踪算法[J]. 通信学报, 2015, 36(10): 200-211.

    Luo H L, Du F F, Kong F S. Pixel feature-weighted scale-adaptive object tracking algorithm[J]. Journal on Communications, 2015, 36(10): 200-211.

    Luo H L, Du F F, Kong F S. Pixel feature-weighted scale-adaptive object tracking algorithm[J]. Journal on Communications, 2015, 36(10): 200-211.

[22] BertinettoL, ValmadreJ, GolodetzS, et al. Staple: Complementary learners for real-time tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1401- 1409.

    BertinettoL, ValmadreJ, GolodetzS, et al. Staple: Complementary learners for real-time tracking[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1401- 1409.

[23] Ning JF, Yang JM, Jiang SJ, et al. Object tracking via dual linear structured SVM and explicit feature map[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4266- 4274.

    Ning JF, Yang JM, Jiang SJ, et al. Object tracking via dual linear structured SVM and explicit feature map[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4266- 4274.

王艳川, 黄海, 李邵梅, 高超. 基于在线检测和尺度自适应的相关滤波跟踪[J]. 光学学报, 2018, 38(2): 0215002. Yanchuan Wang, Hai Huang, Shaomei Li, Chao Gao. Correlation Filter Tracking Based on Online Detection and Scale-Adaption[J]. Acta Optica Sinica, 2018, 38(2): 0215002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!