红外与激光工程, 2016, 45 (8): 0830002, 网络出版: 2016-08-29  

机载平台6-D运动误差对LiDAR点云质量的影响比较

Comparison of impacts of helicopter platform 6-D motion errors on point cloud quality from airborne LiDAR
作者单位
山东理工大学 机械工程学院 测控系,山东 淄博 255000
摘要
直升机载荷平台6-D(Six-Dimensional)运动误差(即飞行轨迹和姿态角运动误差)对机载LiDAR点云质量影响显著,进而影响三维重建模型精度。分析各运动误差对点云质量的影响特点,对于有针对性地消除各运动误差影响、有效提高机载LiDAR三维成像产品精度具有重要意义。建立了机载激光扫描脚点三维空间位置偏差与机载平台六方位运动误差之间的传递关系; 采用数值仿真,定量比较了六方位运动误差对激光点云密度分布和的影响,获得了六方位运动误差的影响特点及规律。仿真结果表明,直升机载荷平台的三个姿态角运动误差对点云密度的影响更显著,且随飞行高度的增大而增大,而三个飞行轨迹运动误差的影响相对较小。
Abstract
The six-dimensional(6-D) motion errors of helicopter loading platform(including three-dimensional(3-D) flight trajectory and 3-D attitude angle motion errors) have significant effects on point density and coverage area of the obtained laser point cloud from helicopter-borne LiDAR. Quantitatively comparing the influence characteristics of each of the 6-D motion errors on quality of the laser point cloud, has practical significance for eliminating the effects of these motion errors and for improving accuracy of the reconstructed 3-D imaging products. The transfer relationships between the 3-D position errors of the laser points and the 6-D motion errors were established. Through numerical simulation experiment, changes of point density and coverage area of the laser point cloud caused by the 6-D motion errors were quantitatively evaluated respectively and transversely compared. Simulation experimental results show that, the effects of the 3-D attitude angle motion errors are more significant, and also increase with increasing flight height; while the impacts of the 3-D flight trajectory motion errors are much smaller.
参考文献

[1] Wang Jianjun, Xu Lijun, Li Xiaolu, et al. Quantitative evaluation of impacts of random errors on ALS accuracy using multiple linear regression method[J]. IEEE Transaction on Instrument and Measurement, 2012, 61(8): 2242-2252.

[2] Sun Meiling, Li Yongshu, Chen Qiang, et al. Iterative multi-scale filter based on morphological opening by reconstruction for LiDAR urban data[J]. Infrared and Laser Engineering, 2015, 44(1): 363-369. (in Chinese)

[3] Wang Jianjun. Optimized design of parameters affecting the accuracy of airborne LiDAR by using orthogonalization-based experiments [J]. Chinese Journal of Lasers, 2013, 42(2): 0214003. (in Chinese)

[4] Jeff Dickman, Maarten Uijt Haag. Aircraft heading measurement potential from an airborne laser scanner using edge extraction [C]//IEEE Aerospace Conference, 2007: 1053-1-16.

[5] Lv Dan, Sun Jianfeng, Li Qi, et al. 3D pose estimation of target based on ladar range image[J]. Infrared and Laser Engineering, 2015, 44(4): 1115-1120. (in Chinese)

[6] Alexander V Beresnev, Alexander I Abramochkin, Alexander A Tikhomirov. Airborne LiDAR facilities with scanning of sensing direction [C]//SPIE, 2000, 4341: 519-525.

[7] Zhang Qingyuan, Li Li, Li Quanxi, et al. Comprehensive information processing system ofhelicopter anticollision laser radar[J]. Chinese Optics, 2013, 6(1): 80-87. (in Chinese)

[8] Li Shukai, Xue Yongqi. The Integrated Technology System of High Efficiency Three-Dimensional Remote Sensing[M]. Beijing: Science Press, 2000: 96-97. (in Chinese)

[9] Guo Hao, Li Yang, Qu Qiulin, et al. Studying atmospheric turbulence effects on aircraft motion for airborne SAR motion compensation requirements[C]//2012 IEEE International Conference on Imaging Systems and Techniques(IST), 2012: 152-157.

[10] Wang J G, Wang J L, Barnes J, et al. Flight test of a GPS/INS/Pseudolite integrated system for airborne mapping[C]//Spatial Sciences Conference, 2007: 108-118.

[11] National Defense Science and Technology Industry Committee. GJB 150.16-1986 Vibration test of environmental testing method for military equipment [S]. Beijing: National Defense Science and Technology Industry Committee, 1986. (in Chinese)

[12] Xian Bin, Gu Xun, Liu Xiang, et al. Nonlinear robust attitude control for a miniature unmanned helicopter[J]. Control Theory and Applications, 2014, 31(4): 409-416. (in Chinese)

[13] Wu Youqian, Pei Hailong. Trajectory planning for unmanned helicopter based on Dubins curves[J]. Computer Engineering and Design, 2011, 32(4): 1426-1429, 1448. (in Chinese)

[14] Baltsavias E P. A comparison between photogrammetry and laser scanning[J]. ISPRS Journal of photogrammetry and Remote Sensing, 1999, 54(2/3): 83-94.

[15] Hofton M A, Blair J B, Minster J B, et al. An airborne scanning laser altimetry survey of Long Valley, California [J]. International Journal of Remote Sensing, 2000, 21(11): 2413-2437.

[16] Wang Jianjun, Xu Lijun, Li Xiaolu, et al. Impact of attitude deviations on laser point cloud of airborne LiDAR[J]. Chinese Journal of Scientific Instrument, 2011, 32(8): 1810-1817. (in Chinese)

[17] Wang Jianjun, Xu Lijun, Li Xiaolu. Impacts of random attitude measurement errors on airborne laser scanning image [J]. Chinese Journal of Lasers, 2011, 38(3): 0314001. (in Chinese)

[18] Kider D B, Smith D H. Advance in the data compression of digital elevation models[J]. Computers and Geosciences,2003, 29: 985-1002.

王建军, 许同乐, 李东兴, 霍文骁, 李云龙. 机载平台6-D运动误差对LiDAR点云质量的影响比较[J]. 红外与激光工程, 2016, 45(8): 0830002. Wang Jianjun, Xu Tongle, Li Dongxing, Huo Wenxiao, Li Yunlong. Comparison of impacts of helicopter platform 6-D motion errors on point cloud quality from airborne LiDAR[J]. Infrared and Laser Engineering, 2016, 45(8): 0830002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!