激光与光电子学进展, 2019, 56 (2): 020001, 网络出版: 2019-08-01   

相干测风激光雷达研究进展和应用 下载: 2796次封面文章

Research Progress and Application of Coherent Wind Lidar
周艳宗 1,2王冲 1,2刘燕平 1,2夏海云 1,2,*
作者单位
1 中国科学技术大学地球和空间科学学院, 安徽 合肥 230026
2 中国科学院近地空间环境重点实验室, 安徽 合肥 230026
引用该论文

周艳宗, 王冲, 刘燕平, 夏海云. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 020001.

Yanzong Zhou, Chong Wang, Yanping Liu, Haiyun Xia. Research Progress and Application of Coherent Wind Lidar[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020001.

参考文献

[1] Huffaker R M. Laser Doppler detection systems for gas velocity measurement[J]. Applied Optics, 1970, 9(5): 1026-1039.

[2] QuantF, Farmer KR, Tan PV, et al. Handheld laser induced breakdown spectroscopy device: US9506869[P/OL]. 2016-11-29[2018-05-21]. http: ∥www. freepatentsonline. com/9506869. html.

[3] Phillips M W, Hannon S M, Henderson S W, et al. Solid state coherent lidar technology for space-based wind measurement[J]. Proceedings of SPIE, 1997, 2956: 68-76.

[4] Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040.

[5] 上官明佳. 1.5 μm单光子探测器在激光遥感中的应用[D]. 合肥: 中国科学技术大学, 2017.

    Shangguan MJ. Laser remote sensing with 1.5 μm single photon detectors[D]. Hefei: University of Science and Technology of China, 2017.

[6] Philippov V, Codemard C, Jeong Y, et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 2004, 29(22): 2590-2592.

[7] 朱京平. 光电子技术基础[M]. 北京: 科学出版社, 2009.

    Zhu JP. Optoelectronic technology foundation[M]. Beijing: Science Press, 2009.

[8] 夏海云. 基于气溶胶后向散射的双边缘直接探测多普勒测风激光雷达研究[D]. 苏州: 苏州大学, 2006.

    Xia HY. Direct detection Doppler wind lidar based on aerosol backscattered signal with twin-channel Fabry-Perot etalon[D]. Suzhou: Soochow University, 2006.

[9] Patel C K. Interpretation of CO2 optical maser experiments[J]. Physical Review Letters, 1964, 12(21): 588-590.

[10] Huffaker R M, Jelalian A V. Thomson J A L. Laser-Doppler system for detection of aircraft trailing vortices[J]. Proceedings of the IEEE, 1970, 58(3): 322-326.

[11] Vaughan J M, Harris M. Lidar measurement of B747 wakes: observation of a vortex within a vortex[J]. Aerospace Science and Technology, 2001, 5(6): 409-411.

[12] Köpp F, Schwiesow R L, Werner C. Remote measurements of boundary-layer wind profiles using a CW Doppler lidar[J]. Journal of Applied Meteorology, 1984, 23(1): 148-154.

[13] Woodfield AA, Vaughan JM. Using anairborne CO2 CW laser for free stream airspeed and wind shear measurements[Z]. [S. l. ]:AGARD Flight Test Techniques Series, 1984: 18.

[14] Vaughan J M, Brown D W, Davies P H, et al. Comparison of SAGE II solar extinction data with airborne measurements of atmospheric backscattering in the troposphere and lower stratosphere[J]. Nature, 1988, 332(6166): 709-711.

[15] Bilbro J W, Vaughan W W. Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system[J]. Bulletin of the American Meteorological Society, 1978, 59(9): 1095-1101.

[16] Bilbro J W. DiMarzio C, Fitzjarrald D, et al. Airborne Doppler lidar measurements[J]. Applied Optics, 1986, 25(21): 3952-3960.

[17] Hall F F, Huffaker R M, Hardesty R M, et al. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar[J]. Applied Optics, 1984, 23(15): 2503-2506.

[18] Post M J, Neff W D. Doppler lidar measurements of winds in a narrow mountain valley[J]. Bulletin of the American Meteorological Society, 1986, 67(3): 274-281.

[19] Post M J, Cupp R E. Optimizing a pulsed Doppler lidar[J]. Applied Optics, 1990, 29(28): 4145-4158.

[20] Banta R M, Olivier L D, Gudiksen P H, et al. Implications of small-scale flow features to modeling dispersion over complex terrain[J]. Journal of Applied Meteorology, 1996, 35(3): 330-342.

[21] Rothermel J, Cutten D R, Hardesty R M, et al. The multi-center airborne coherent atmospheric wind sensor[J]. Bulletin of the American Meteorological Society, 1998, 79(4): 581-600.

[22] Doran J C, Fast J D, Horel J. The VTMX 2000 campaign[J]. Bulletin of the American Meteorological Society, 2002, 83(4): 537-554.

[23] Mayor S D, Lenschow D H, Schwiesow R L, et al. Validation of NCAR 10.6 μm CO2 Doppler lidar radial velocity measurements and comparison with a 915 MHz profiler[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(5): 1110-1126.

[24] Kavaya M J, Menzies R T. Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations[J]. Applied Optics, 1985, 24(21): 3444-3453.

[25] Werner C, Flamant P H, Reitebuch O, et al. Wind infrared Doppler lidar instrument[J]. Optical Engineering, 2001, 40(1): 115-126.

[26] Kane T J, Byvik C E, Kozlovsky W J, et al. Coherent laser radar at 1.06 μm using Nd∶YAG lasers[J]. Optics Letters, 1987, 12(4): 239-241.

[27] Kavaya M J, Henderson S W, Magee J R, et al. Remote wind profiling with a solid-state Nd∶YAG coherent lidar system[J]. Optics Letters, 1989, 14(15): 776-778.

[28] Hawley J G, Targ R, Henderson S W, et al. Coherent launch-site atmospheric wind sounder: theory and experiment[J]. Applied Optics, 1993, 32(24): 4557-4568.

[29] Proctor FH, Hamilton DW. Evaluation of fast-time wake vortex prediction models[C]∥47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5-8, 2009, Orlando, Florida. Virginia: AIAA, 2009: 344.

[30] Prasad N S, Tracy A, Vetorino S, et al. Innovative fiber-laser architecture-based compact wind lidar[J]. Proceedings of SPIE, 2016, 9754: 97540J.

[31] Prasad N S, Sibell R, Vetorino S, et al. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications[J]. Proceedings of SPIE, 2015, 9465: 94650C.

[32] Spuler S M, Richter D, Spowart M P, et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence[J]. Applied Optics, 2011, 50(6): 842-851.

[33] Akbulut M, Hwang J, Kimpel F, et al. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection[J]. Proceedings of SPIE, 2011, 8037: 80370R.

[34] Engin D, Mathason B, Stephen M, et al. High energy, narrow linewidth 1572 nm Er, Yb-fiber based MOPA for a multi-aperture CO2 trace-gas laser space transmitter[J]. Proceedings of SPIE, 2016, 9728: 97282S.

[35] KameyamaS, YanagisawaT, AndoT, et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric Corporation-from late 1990s to 2013[C]∥Proceedings of 17th Coherent Laser Radar Conference, June 17-20, 2013, Barcelona, Spain. Huntsville, Alabama: Universities Space Research Association, 2013: 12- 13.

[36] Asaka K, Hirano Y, Morimoto Y, et al. Er, Yb∶glass coherent lidar using a microchip laser as a reference optical source[J]. The Review of Laser Engineering, 1998, 26(12): 876-880.

[37] Yanagisawa T, Asaka K, Hamazu K, et al. 11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb∶ phosphate glass laser[J]. Optics Letters, 2001, 26(16): 1262-1264.

[38] Asaka K, Yanagisawa T, Hirano Y. 1.5 μm eye-safe coherent lidar system for wind velocity measurement[J]. Proceedings of SPIE, 2001, 4153: 321-329.

[39] Fujiyoshi Y, Yamashita K, Fujiwara C. Visualization of streaks, thermals and waves in the atmospheric boundary layer[J]. Journal of visualization, 2006, 9(4): 359-359.

[40] Kameyama S, Ando T, Asaka K, et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 2007, 46(11): 1953-1962.

[41] Ando T, Kameyama S, Hirano Y. All-fiber coherent Doppler lidar technologies at Mitsubishi Electric Corporation[J]. IOP Conference Series: Earth and Environmental Science, 2008, 1(1): 012011.

[42] Chan P W, Lee Y F. Application of short-range lidar in wind shear alerting[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(2): 207-220.

[43] InokuchiH, TanakaH, Ando T. Development of a long range airborne Doppler lidar[C/OL]∥Proceedings of 27th Congress of International Council of the Aeronautical Sciences, ICAS, September 19-24, 2010, Nice, France. [S.l.: s.n.], 2010[2018-05-21]. http:∥icas. org/ICAS_ARCHIVE/ICAS2010/PAPERS/179. PDF.

[44] Inokuchi H, Endo E, Ando T, et al. Development of an airborne wind measurement system[J]. Proceedings of SPIE, 2009, 7328: 738205.

[45] Inokuchi H, Tanaka H, Ando T. Development of an onboard Doppler lidar for flight safety[J]. Journal of Aircraft, 2009, 46(4): 1411-1415.

[46] SakimuraT, WatanabeY, AndoT, et al. 3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb∶glass planar waveguide for a coherent Doppler LIDAR[C]∥Proceedings of 17th Coherent Laser Radar Conference, June 17-20, 2013, Barcelona, Spain. Huntsville, Alabama: Universities Space Research Association, 2013: 35- 39.

[47] Kameyama S, Sakimura T, Watanabe Y, et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler LIDAR which has the laser amplifier using Er, Yb∶glass planar waveguide[J]. Proceedings of SPIE, 2012, 8526: 85260E.

[48] InokuchiH, FurutaM, Inagaki T. High altitude turbulence detection using an airborne Doppler lidar[C/OL]∥Proceedings of 29th Congress of the International Council of the Aeronautical Sciences, September 7-12, 2014, Petersburg, Russia. [S.l.: s.n.], 2014[2018-05-21]. http:∥www. icas. org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0208_paper. pdf.

[49] Dolfi-BouteyreA, AugéreB, BessonC, et al. 1.5 μm all fiber pulsed lidar for wake vortex monitoring[C]∥Conference on Lasers and Electro-Optics, May 4-9, 2008, San Jose, California United States. Washington: Optical Society of America, 2008: CMQ3.

[50] CanatG, LombardL, DurécuA, et al. Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm[C]∥Conference on Lasers and Electro-Optics, May 6-11, 2007, Baltimore, Maryland United States. Washington: Optical Society of America, 2007: CTuBB1.

[51] Dolfi-Bouteyre A, Canat G, Valla M, et al. Pulsed 1.5 μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.

[52] Dolfi-BouteyreA, AugereB, VallaM, et al. Aircraft wake vortex study and characterization with 1.5 μm fiber Doppler lidar[J]. Aerospace Lab, 2009( 1): 1- 13.

[53] RenardW, GoularD, VallaM, et al. Beyond 10 km range wind-speed measurement with a 1.5 μm all-fiber laser source[C]∥CLEO: Applications and Technology, June 8-13, 2014, San Jose, California United States. Washington: Optical Society of America, 2014: AW1P. 5.

[54] Lombard L, Valla M, Planchat C, et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics Letters, 2015, 40(6): 1030-1033.

[55] Lombard L, Dolfi-Bouteyre A, Besson C, et al. Long range wind lidars based on novel high spectral brilliance all-fibered sources[J]. Proceedings of SPIE, 2015, 9645: 96450B.

[56] Thobois LP, KrishnamurthyR, LoaecS. Wind and EDR measurements with scanning Doppler LIDARs for preparing future weather dependent separation concepts[C]∥7th AIAA Atmospheric and Space Environments Conference, June 22-26, 2015, Dallas, Texas, USA. Virginia: AIAA, 2015: 3317.

[57] ThoboisL, LoaecS, BoquetM, et al. Recent developments of WINDCUBE Doppler Lidars for airport wind hazards monitoring[R/OL]∥WakeNet-Eu2014Workshop, 2014 [2018-05-21]. http:∥www. wakenet. eu/fileadmin/user_upload/Workshop2014/Presentations/WakeNetEurope_Workshop2014_504_Thobois. pdf.

[58] VranckenP, WirthM, RempelD, et al. Clear air turbulence detection and characterization in the DELICAT airborne lidar project[C/OL]∥Proceedings of the 25th International Laser Radar Conference, July 5-9, Petersburg, Russia, [S.l.:s.n.].2010 [ 2018-05-21]. https: ∥elib.dlr.de/67271/1/Seiten_aus_ILRC_25_PROCEEDINGS_VOL_1. pdf.

[59] Besson C, Augere B, Canat G, et al. New fiber laser for lidar developments in disaster management[J]. Proceedings of SPIE, 2014, 9250: 92500H.

[60] BarbarescoF, ThoboisL, Dolfi-BouteyreA, et al. Monitoring wind, turbulence and aircraft wake vortices by high resolution RADAR and LIDAR remote sensors in all weather conditions[C/OL]∥Proceedings of URSI France JS 15, Paris. [S.l.:s.n.]. 2015: 81-110[2018-05-21]. http:∥webistem.com/ursi-f2015/output_directory/cd1/data/articles/000033.pdf.

[61] HallermeyerA, Dolfi-BouteyreA, VallaM, et al. Development and assessment of a Wake Vortex characterization algorithm based on a hybrid LIDAR signal processing[C]∥8th AIAA Atmospheric and Space Environments Conference, June 13-17, 2016, Washington, DC. Virginia: AIAA, 2016: 3272.

[62] KigleS. Wake identification and characterization of a full scale wind energy converter in complex terrain with scanning Doppler wind Lidar systems[D]. München:Ludwig-Maximilians-Universität München, 2017.

[63] AugrosC, TabaryP, DavrincheD, et al. Test of an X-band Doppler polar metric radar combined with a Doppler LIDAR for wind shear detection at Nice Airport[C/OL]∥The Seventh European Conference on Radar in Meteorology and Hydrology, June 25-29, 2012, Toulouse, France. [S.l.:s.n.], 2012[2018-05-21]. http:∥www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/ATM_014_ext_abs.pdf.

[64] GibertF, DumasA, ThoboisL, et al. Afternoon transition turbulence decay revisited by Doppler Lidar[C/OL]∥Symposium on Boundary Layer and Turbulence, July 8-13, 2012, Boston, USA. [2018-05-21]. http:∥bllast.sedoo.fr/workshops/february2016/presentations/FabienGibert_TKE-budget.pdf.

[65] Chen Y, An J, Wang X, et al. Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar[J]. Journal of Meteorological Research, 2017, 31(2): 350-362.

[66] Karlsson C J, Olsson F A, Letalick D, et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements[J]. Applied Optics, 2000, 39(21): 3716-3726.

[67] Harris M, Constant G, Ward C. Continuous-wave bistatic laser Doppler wind sensor[J]. Applied Optics, 2001, 40(9): 1501-1506.

[68] Jørgensen HE, MikkelsenT, MannJ, et al. Site wind field determination using a CW Doppler LIDAR-comparison with cup anemometers at Risø[C]∥Special Topic Conference: The Science of Making Torque from Wind, April 19-21, 2004. Delft, Netherlands. [S. l. ]: Delft University of Technology, 2004: 261- 266.

[69] Smith D A, Harris M, Coffey A S, et al. Wind lidar evaluation at the Danish wind test site in Høvsøre[J]. Wind Energy, 2006, 9(1/2): 87-93.

[70] BingölF. Adapting a Doppler laser anemometer to wind energy[D]. Lyngby: Technical University of Denmark, 2005.

[71] Pearson G N, Roberts P J, Eacock J R, et al. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications[J]. Applied Optics, 2002, 41(30): 6442-6450.

[72] Wang H, Barthelmie R J, Crippa P, et al. Profiles of wind and turbulence in the coastal atmospheric boundary layer of Lake Erie[J]. Journal of Physics: Conference Series, 2014, 524(1): 012117.

[73] Gottschall J, Wolken-Möhlmann G, Lange B. About offshore resource assessment with floating lidars with special respect to turbulence and extreme events[J]. Journal of Physics: Conference Series, 2014, 555(1): 012043.

[74] Gottschall J. Galion lidar performance verification[R/OL]. Fraunhofer IWES, 2013[ 2018-05-21]. https:∥www. woodgroup.com/__data/assets/pdf_file/0023/15692/report_Sgurr_20130529_FINAL1.pdf.

[75] Pearson G N, Eacock J R. Fiber-based coherent pulsed Doppler lidar for atmospheric monitoring[J]. Proceedings of SPIE, 2002, 4484: 51-58.

[76] Philippov V N, Sahu J K, Codemard C A, et al. All-fiber 1.15-mJ pulsed eye-safe optical source[J]. Proceedings of SPIE, 2004, 5335: 1-8.

[77] Pearson G N, Ridley K D, Willetts D V. Long range 3D active imagery with a scanned single element 1.5 μm coherent lidar system[J]. Proceedings of SPIE, 2005, 5988: 59880M.

[78] Collier CG, DaviesF, DaviesJ, et al. Doppler radar and lidar observations of a thunderstorm outflow[C]∥Proceedings of Fifth European Conference on Radar in Meteorology and Hydrology, June 30-July 4, 2008, Helsinki. [S.l.:s.n.], 2008-12-04.

[79] Hogan R J. Grant A L M, Illingworth A J, et al. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(640): 635-643.

[80] Pearson G, Davies F, Collier C. Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar[J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5891-5901.

[81] Westbrook C D, Illingworth A J. O'Connor E J, et al. Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(646): 260-276.

[82] O’Connor E J, Illingworth A J, Brooks I M, et al. . A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(10): 1652-1664.

[83] Abari C F, Pedersen A T, Mann J. An all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Optics Express, 2014, 22(21): 25880-25894.

[84] Pedersen A T, Abari C F, Mann J, et al. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar[J]. Journal of Physics: Conference Series, 2014, 524(1): 012004.

[85] Abari C F, Dellwik E, Mann J. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques, 2015, 8(10): 4145-4153.

[86] Abari C F, Chu X, Hardesty R M, et al. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations[J]. Applied Optics, 2015, 54(30): 8999-9009.

[87] Hu Q, Rodrigo P J, Pedersen C. Remote wind sensing with a CW diode laser lidar beyond the coherence regime[J]. Optics Letters, 2014, 39(16): 4875-4878.

[88] Rodrigo P J, Pedersen C. Comparative study of the performance of semiconductor laser based coherent Doppler lidars[J]. Proceedings of SPIE, 2012, 8241: 824112.

[89] 李冬梅, 郑永超, 潘静岩, 等. 相干多普勒激光测风雷达系统研究[J]. 光学技术, 2010, 6: 880-884.

    Li D M, Zheng Y C, Pan J Y, et al. Index system of coherence Doppler wind lidar[J]. Optics Technology, 2010, 6: 880-884.

[90] 潘静岩, 邬双阳, 刘果, 等. 相干激光测风雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724.

    Pan J Y, Qin S Y, Liu G, et al. Coherent laser wind measurement radar wind field measurement technology[J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724.

[91] 封治华, 杜改丽. 相干多普勒激光测风雷达系统研究及验证[J]. 激光与红外, 2015, 45(2): 128-132.

    Feng Z H, Du G L. Research and verification of coherent Doppler wind lidar[J]. Laser and Infrared, 2015, 45(2): 128-132.

[92] 冯力天, 郭弘其, 陈涌, 等. 1.55 μm全光纤多普勒测风雷达系统与试验[J]. 红外与激光工程, 2011, 40(5): 844-847.

    Feng L T, Guo H Q, Chen Y, et al. Experiment of all fiber Doppler liar at 1.55 μm[J]. Infrared and Laser Engineering, 2011, 40(5): 844-847.

[93] LiuJ, ChenW, ZhuX. Development of all-fiber coherent Doppler LIDAR to measure atmosphere wind speed[C]∥Optical Instrumentation for Energy and Environmental Applications, November 11-14, 2012. Eindhoven Netherlands. Washington: Optical Society of America, 2012: ET4D. 1.

[94] Diao W, Zhang X, Liu J, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 2014, 12(7): 072801.

[95] 刁伟峰, 刘继桥, 竹孝鹏, 等. 全光纤相干多普勒激光雷达非线性最小二乘风速反演方法及实验研究[J]. 中国激光, 2015, 42(9): 0914003.

    Diao W F, Liu J, Zhu X P, et al. Study of all-fiber coherent Doppler lidar wind profile nonlinear least square retrieval method and validation experiment[J]. Chinese Journal of Lasers, 2015, 42(9): 0914003.

[96] Bu Z, Zhang Y, Chen S, et al. Noise modeling by the trend of each range gate for coherent Doppler LIDAR[J]. Optical Engineering, 2014, 53(6): 063109.

[97] 范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003.

    Fan Q, Zhu K Y, Zheng J F, et al. Detection performance analysis of all-fiber coherent lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003.

[98] Wu S, Yin J, Liu B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[J]. Proceedings of SPIE, 2014, 9262: 92620H.

[99] Zhai X, Wu S, Liu B. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 2017, 25(12): A515-A529.

[100] Wu S, Liu B, Liu J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10): A762-A780.

[101] 冯长中, 吴松华, 刘秉义. 相干多普勒激光雷达风场反演方法研究与实验印证[J]. 中国激光, 2018, 45(4): 0410001.

    Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experiment verification[J]. Chinese Journal of Lasers, 2018, 45(4): 0410001.

[102] Wang C, Xia H, Shangguan M, et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 2017, 25(17): 20663-20674.

[103] Wang C, Xia H, Liu Y, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 2018, 424: 48-53.

[104] Henderson S W, Hale C P, Magee J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho∶YAG lasers[J]. Optics Letters, 1991, 16(10): 773-775.

[105] Suni P J M, Henderson S W. 1-mJ/pulse Tm∶YAG laser pumped by a 3-W diode laser[J]. Optics Letters, 1991, 16(11): 817-819.

[106] Henderson S W. Suni P J M, Hale C P, et al. Coherent laser radar at 2 μm using solid-state lasers[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 4-15.

[107] Targ R, Steakley B C, Hawley J G, et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied Optics, 1996, 35(36): 7117-7127.

[108] Wulfmeyer V, Randall M, Brewer A, et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics Letters, 2000, 25(17): 1228-1230.

[109] Lenschow D H, Wulfmeyer V, Senff C. Measuring second-through fourth-order moments in noisy data[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(10): 1330-1347.

[110] Newsom R K, Banta R M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99[J]. Journal of the Atmospheric Sciences, 2003, 60(1): 16-33.

[111] Poulos G S, Blumen W, Fritts D C, et al. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer[J]. Bulletin of the American Meteorological Society, 2002, 83(4): 555-581.

[112] Grund C J, Banta R M, George J L, et al. High-resolution Doppler lidar for boundary layer and cloud research[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(3): 376-393.

[113] Frehlich R, Hannon S M, Henderson S W. Performance of a 2-μm coherent Doppler lidar for wind measurements[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(6): 1517-1528.

[114] Frehlich R, Hannon S M, Henderson S W. Coherent Doppler lidar measurements of winds in the weak signal regime[J]. Applied Optics, 1997, 36(15): 3491-3499.

[115] Henderson S W, Yuen E H, Hannon S M. Autonomous lidar wind field sensor: design and performance[J]. Proceedings of SPIE, 1999, 3757: 18-28.

[116] Hannon S M. Autonomous infrared Doppler radar: Airport surveillance applications[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(10/11/12): 1005-1011.

[117] Kavaya M J, Beyon J Y, Koch G J, et al. The Doppler aerosol wind (DAWN) airborne, wind-profiling coherent-detection Lidar system: overview and preliminary flight results[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(4): 826-842.

[118] Yu J, Singh U N, Barnes N P, et al. 125-mJ diode-pumped injection-seeded Ho∶Tm∶YLF laser[J]. Optics Letters, 1998, 23(10): 780-782.

[119] Koch G J, Petros M, Barnes B W, et al. Validar: a testbed for advanced 2-micron Doppler lidar[J]. Proceedings of SPIE, 2004, 5412: 87-98.

[120] 李彦超. 2 μm激光测风雷达外差探测方法与关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    Li YC. Study on heterodyne method and key technology for 2-micrometer wind lidar[D]. Harbin: Harbin Institute of Technology, 2012.

[121] 步志超, 陈思颖, 张寅超, 等. 2 μm星载相干测风激光雷达风速及风向误差建模与分析[J]. 红外与毫米波学报, 2015, 34(4): 465-470.

    Bu Z C, Chen S Y, Zhang Y C, et al. Error modeling and analysis on wind speed and direction for 2 μm space based coherent Doppler lidar[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 465-470.

[122] 朱振宇, 高昆, 韩璐, 等. 天基相干测风激光雷达技术分析[J]. 激光与光电子学进展, 2015, 52(10): 101201.

    Zhu Z Y, Gao K, Han L, et al. Technical analysis of space-based coherent wind lidar[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101201.

[123] Shun C M, Chan P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655.

[124] Dolfi-Bouteyre A, Canat G, Valla M, et al. Pulsed 1.5-μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.

[125] Tucker S C, Senff C J, Weickmann A M, et al. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(4): 673-688.

[126] Witschas B, Rahm S, Dörnbrack A, et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1371-1386.

周艳宗, 王冲, 刘燕平, 夏海云. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 020001. Yanzong Zhou, Chong Wang, Yanping Liu, Haiyun Xia. Research Progress and Application of Coherent Wind Lidar[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020001.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!