激光与光电子学进展, 2011, 48 (8): 081902, 网络出版: 2011-07-26   

可调谐超短中红外激光脉冲的参变产生与放大及其最新进展 下载: 513次

Recent Advances and Methods of Optical Parametric Generation and Amplification for Tunable Ultra-Short Mid-Infrared Pulse
作者单位
1 湖南大学信息科学与工程学院微纳光电器件及应用教育部重点实验室, 湖南 长沙 410082
2 衡阳师范学院物理与电子信息科学系, 湖南 衡阳 421008
摘要
介绍了基于非线性光学参变过程产生和放大中红外可调谐超短激光脉冲的主要方法,比较了参变振荡、差频产生、光学参变放大和啁啾脉冲光学参变放大等4种产生与放大方法的技术特点,重点评述了最近10年来国内外利用光学参变放大和啁啾脉冲光学参变放大实现大增益宽带和高峰值功率输出的最新进展。探讨了获得更高能量/功率和更短脉冲(更大带宽) 中红外激光输出的关键问题和技术瓶颈及其解决途径。
Abstract
The main methods of generation and amplification for tunable ultra-short middle-infrared laser pulses, based on nonlinear optical parametric process, are introduced briefly. The technical characteristics of the parametric oscillator, difference frequency generation, optical parametric amplification and chirped pulse optical parametric amplification are compared. Focusing on both expanding the gain bandwidth and improving the output power, the latest developments in the field of ultra-broadband optical parametric amplification and optical parametric chirped-pulse amplification in the past decade are highlighted. In addition, the key issues and technology bottlenecks as well as solutions of access to high energy/power and short pulse (broader bandwidth) are discussed.
参考文献

[1] S. Woutersen, U. Emmerichs, H. Bakker. Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure[J]. Science, 1997, 278(5338): 658~660

[2] Robert K. Shelton, Long-Sheng Ma, Henry C. Kapteyn et al.. Phase coherent optical pulse synthesis from separate femtosecond lasers[J]. Science, 2001, 293(5533): 1286~1289

[3] M. Nagai, R. Shimano, M. Kuwata-Gonokami. Electron-hole droplet formation in direct-gap semiconductors observed by mid-infrared pump-probe spectroscopy[J]. Phys. Rev. Lett., 2001, 86(25): 5795~5798

[4] R. Kienberger, E. Goulielmakis, M. Uiberacker et al.. Atomic transient recorder[J]. Nature, 2004, 427(6977): 817~821

[5] R. N. Zare. Laser control of chemical reactions[J]. Science, 1998, 279(5358): 1875~1879

[6] J. Headrick, E. Diken, R. Walters et al.. Spectral signatures of hydrated proton vibrations in water clusters[J]. Science, 2005, 308(5729): 1765~1769

[7] A. Assion, T. Baumert, M. Bergt et al.. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[J]. Science, 1998, 282(5390): 919~922

[8] 赵晓辉, 聂志矗, 张连水 等. 茶叶及其组份的红外光谱研究[J]. 光学学报, 2009, 29(2): 533~536

    Zhao Xiaohui, Nie Zhichu, Zhang Lianshui et al.. Study on tea and its principal components by infrared spectroscopy [J]. Acta Optica Sinica, 2009, 29(2): 533~536

[9] G. B. Serapiglia, K. L. Vodopyanov, C. C. Phillips. Nonequilibrium electron distributions in a three-subband InGaAs/InAlAs quantum well studied via double resonance spectroscopy[J]. Appl. Phys. Lett., 2000, 77(6): 857~859

[10] 汪六三, 曹振松, 王欢 等. 宽调谐中红外差频激光及大气水气浓度探测[J]. 光学学报, 2011, 31(4): 0414003

    Wang Liusan, Cao Zhensong, Wang Huan et al.. A widely tunable mid-Infrared difference frequency generation laser and its detection of atmospheric water[J]. Acta Optica Sinica, 2011, 31(4): 0414003

[11] R. A. Kaindl, M. Woerner, T. Elsaesser et al.. Ultrafast mid-Infrared response of YBa2Cu3O7 [J]. Science, 2000, 287(5452): 470~473

[12] D. Richter, A. Fried, B. Wert et al.. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Appl. Phys. B, 2002, 75(2): 281~288

[13] S. H. Bhattacharya, T. J. Raiford, K. K. Murray. Infrared laser desorption/ionization on silicon[J]. Anal. Chem., 2002, 74(9): 2228~2231

[14] J. Herbst. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization[J]. Science, 2002, 297(5582): 822~825

[15] 赖波, 秦红科, 周岳溪 等. 应用红外光谱技术快速检测ABS废水中特征污染物的分解转化[J]. 光学学报, 2011, 31( 2): 0230001

    Lai Bo, Qin Hongke, Zhou Yuexi et al.. Rapid detection of the degradation of the typical pollutants from ABS wastewater using fourier transform infrared spectroscopy[J]. Acta Optica Sinica, 2011, 31(2): 0230001

[16] P. Geiser, U. Willer, D. Walter et al.. A subnanosecond pulsed laser-source for mid-infrared LIDAR [J]. Appl. Phys. B, 2006, 83(2): 175~179

[17] C. Bauer, P. Geiser, J. Burgmeier et al.. Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives[J]. Appl. Phys. B, 2006, 85(2): 251~256

[18] P. Nemes, A. Vertes. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry[J]. Anal. Chem., 2007, 79(21): 8098~8106

[19] A. Nadezhdinskii, Y. Ponurovskii, D. Stavrovskii. Non-contact detection of explosives by means of a tunable diode laser spectroscopy[J]. Appl. Phys. B, 2008, 90(2): 361~364

[20] 崔大复, 李杰. 中红外超短脉冲的产生及其研究的最新进展[J]. 物理, 1994, 23(3): 173~178

    Chui Dafu, Li Jie. The generation and latest progress of ultrashort mid-infrared pulse[J]. Wuli (Physics), 1994, 23(3): 173~178

[21] M. Dunn, M. Ebrahimzadeh. Parametric generation of tunable light from continuous-wave to femtosecond pulses[J]. Science, 1999, 286(5444): 1513~1517

[22] 邓颖, 朱启华, 曾小明 等. 超短中红外激光脉冲的产生及其发展状况[J]. 激光与光电子学进展, 2006, 43(8): 21~26

    Deng Ying, Zhu Qihua, Zeng Xiaoming et al.. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress, 2006, 43(8): 21~26

[23] 盛泉, 丁欣, 陈娜 等. 连续波可调谐内腔光学参量振荡器及橙红光源[J]. 中国激光, 2010, 37(11): 2821~2824

    Sheng Quan, Ding Xin, Chen Na et al.. Continuous-wave tunable intra-cavity optical parametric oscillator and orange-red source[J]. Chinese J. Lasers, 2010, 37(11): 2821~2824

[24] A. Godard. Infrared (2~12 μm) solid-state laser sources: a review[J]. C. R. Phys., 2007, 8(10): 1100~1128

[25] 吴晓丽, 韩海年, 王薇 等. 差频产生中红外飞秒激光脉冲的研究进展[J]. 物理, 2009, 38(4): 261~266

    Wu Xiaoli, Han Haiyan, Wang Wei et al.. Progress in mid-infrared femtosecond pulse generation with difference frequency techniques[J]. Physics, 2009, 38(4): 261~266

[26] D. Brida, C. Manzoni, G. Cirmi et al.. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers[J]. J. Opt., 2010, 12(1): 013001

[27] D. Maas, D. Duncan, A. van der Meer et al.. Vibrational ladder climbing in NO by ultrashort infrared laser pulses[J]. Chem. Phys. Lett., 1997, 270(1~2): 45~49

[28] C. Y. Wang, L. Kuznetsova, V. M. Gkortsas et al.. Mode-locked pulses from mid-infrared quantum cascade lasers[J]. Opt. Express, 2009, 17(15): 12929~12943

[29] S. Mirov, V. Fedorov, I. Moskalev et al.. Progress in Cr2+ and Fe2+ doped mid-IR laser materials[J]. Laser Photonics Rev., 2010, 4(1): 21~41

[30] E. Sorokin, I. Sorokina, J. Mandon et al.. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+: ZnSe femtosecond laser[J]. Opt. Express, 2007, 15(25): 16540~16545

[31] D. Edelstein, E. Wachman, C. Tang. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Appl. Phys. Lett., 1989, 54(18): 1728~1730

[32] A. Tokmakoff, C. Marshall, M. Fayer. Optical parametric amplification of 1-kHz high-energy picosecond midinfrared pulses and application to infrared transient-grating experiments on diamond[J]. J. Opt. Soc. Am. B, 1993, 10(9): 1785~1791

[33] F. Seifert, V. Petrov, M. Woerner. Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm[J]. Opt. Lett., 1994, 19(23): 2009~2011

[34] D. E. Spence, S. Wielandy, C. L. Tang et al.. High average power, high-repetition rate femtosecond pulse generation in the 1-5 μ m region using an optical parametric oscillator[J]. Appl. Phys. Lett., 1996, 68(4): 452~454

[35] K. C. Burr, C. L. Tang, M. A. Arbore et al.. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate[J]. Appl. Phys. Lett., 1997, 70(25): 3341~3343

[36] G. Gale, G. Gallot, F. Hache et al.. Generation of intense highly coherent femtosecond pulses in the mid infrared[J]. Opt. Lett., 1997, 22(16): 1253~1255

[37] J. Hong, A. Bawagan, S. Charbonneau et al.. Broadly tunable femtosecond pulse generation in the near and mid-infrared[J]. Appl. Opt., 1997, 36(9): 1894~1897

[38] D. Reid, G. Kennedy, A. Miller et al.. Widely tunable, near-to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4[J]. IEEE J. Sel. Top. Quantum Electron., 1998, 4(2): 238~248

[39] P. Phillips, S. Das, M. Ebrahimzadeh. High-repetition-rate, all-solid-state, Ti: sapphire-pumped optical parametric oscillator for the mid-infrared[J]. Appl. Phys. Lett., 2000, 77(4): 469~472

[40] M. Ebrahimzadeh, P. Phillips, S. Das. Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti: sapphire laser[J]. Appl. Phys. B, 2001, 72(7): 793~801

[41] M. Tiihonen, V. Pasiskevicius, F. Laurell. Spectral and spatial limiting in an idler-resonant PPKTP optical parametric oscillator[J]. Opt. Commun., 2005, 250(1-3): 207~211

[42] R. S. Kurti, K. D. Singer. Pulse compression in a silver gallium sulfide, midinfrared, synchronously pumped optical parametric oscillator[J]. J. Opt. Soc. Am. B, 2005, 22(10): 2157~2163

[43] M. Henriksson, M. Tiihonen, V. Pasiskevicius et al.. Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator[J]. Appl. Phys. B, 2007, 88(1): 37~41

[44] X. Bo, Z. Shu-Bao, G. Lin et al.. Period continuous tuning of an efficient mid-infrared optical parametric oscillator based on a fan-out periodically poled MgO-doped lithium niobate[J]. Chin. Phys. Lett., 2010, 27(1): 014206

[45] K. Burr, C. Tang, M. Arbore et al.. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate[J]. Opt. Lett., 1997, 22(19): 1458~1460

[46] B. Zhou, C. Q. Xu, B. Chen. Comparison of difference frequency generation and cascaded χ2 based wavelength conversions in LiNbO3 quasi-phase-matched waveguides[J]. J. Opt. Soc. Am. B, 2003, 20(5): 846~852

[47] M. Reed, M. Shepard. Tunable infrared generation using a femtosecond 250 kHz Ti: sapphire regenerative amplifier[J]. IEEE J. Quantum Electron., 1996, 32(8): 1273~1277

[48] B. Golubovic, M. Reed. All-solid-state generation of 100 kHz tunable mid-infrared 50 fs pulses in type I and type II AgGaS2[J]. Opt. Lett., 1998, 23(22): 1760~1762

[49] R. A. Kaindl, M. Wurm, K. Reimann et al.. Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm[J]. J. Opt. Soc. Am. B: Opt. Phys., 2000, 17(12): 2086~2094

[50] C. Erny, K. Moutzouris, J. Biegert et al.. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source[J]. Opt. Lett., 2007, 32(9): 1138~1140

[51] D. Brida, C. Manzoni, G. Cirmi et al.. Generation of broadband mid-infrared pulses from an optical parametric amplifier[J]. Opt. Express, 2007, 15: 15035~15040

[52] G. Holtom, R. Crowell, X. Xie. High-repetition-rate femtosecond optical parametric oscillator amplifier system near 3 μm[J]. J. Opt. Soc. Am. B, 1995, 12(9): 1723~1731

[53] V. Petrov, F. Noack. Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding[J]. J. Opt. Soc. Am. B, 1995, 12(11): 2214~2221

[54] V. Petrov, F. Noack. Mid-infrared femtosecond optical parametric amplification in potassium niobate[J]. Opt. Lett., 1996, 21(19): 1576~1578

[55] V. Petrov, F. Noack, R. Stolzenberger. Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm[J]. Appl. Opt., 1997, 36(6): 1164~1172

[56] F. Rotermund, V. Petrov, F. Noack et al.. Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 μm[J]. J. Opt. Soc. Am. B, 1999, 16(9): 1539~1545

[57] 彭跃峰, 魏星斌, 王卫民 等. 高效率中红外2.7 μm可调谐激光器[J]. 光学学报, 2009, 30(9): 2624~2628

    Peng Yuefeng, Wei Xingbin, Wang Weimin et al.. High-efficiency 2.7 μm tunable mid-infrared laser[J]. Acta Optica Sinica, 2009, 30(9): 2624~2628

[58] F. Rotermund, V. Petrov, F. Noack et al.. Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm[J]. Appl. Phys. Lett., 2001, 78(18): 2623~2625

[59] V. Petrov, F. Rotermund, F. Noack. Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals[J]. J. Opt. A, 2001, 3(3): R1~R19

[60] 檀慧明, 林洪沂, 张搏麟. 基于PPMgLN的中红外全固态可调谐光学参量振荡器[J]. 中国激光, 2010, 37(9): 2303~2306

    Tan Huiming, Lin Hongyi, Zhang Bolin. Mid-infrared tunable all-solid-state optical parametric oscillator based on PPMgLN[J]. Chinese J. Lasers, 2010, 37(9): 2303~2306

[61] J. Kafka, M. Watts, J. Pieterse. Synchronously pumped optical parametric oscillators with LiB3O5[J]. J. Opt. Soc. Am. B: Opt. Phys., 1995, 12(9): 2147~2157

[62] A. Bonvalet, M. Joffre, J. L. Martin et al.. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate[J]. Appl. Phys. Lett., 1995, 67(20): 2907~2909

[63] O. Chalus, P. K. Bates, M. Smolarski et al.. Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz[J]. Opt. Express, 2009, 17(5): 3587~3594

[64] D. Brida, M. Marangoni, C. Manzoni et al.. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier[J]. Opt. Lett., 2008, 33(24): 2901~2903

[65] J. Price, T. Monro, H. Ebendorff-Heidepriem et al.. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 738~749

[66] S. Hadrich, J. Rothhardt, F. Roser et al.. Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2 GW peak power[J]. Opt. Express, 2008, 16(24): 19812~19820

[67] J. Rothhardt, S. Hadrich, F. Roser et al.. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate[J]. Opt. Express, 2008, 16(12): 8981~8988

[68] C. Aguergaray, O. Schmidt, J. Rothhardt et al.. Ultra-wide parametric amplification at 800 nm toward octave spanning[J]. Opt. Express, 2009, 17(7): 5153~5162

[69] I. Jovanovic, B. J. Comaskey, C. A. Ebbers et al.. Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers[J]. Appl. Opt., 2002, 41(15): 2923~2929

[70] Chih-Wei Hsu, C. C. Yang. Broadband infrared generation with noncollinear optical parametric processes on periodically poled LiNbO3[J]. Opt. Lett., 2001, 26(18): 1412~1414

[71] A. Baltuka, T. Fuji, T. Kobayashi. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Phys. Rev. Lett., 2002, 88(13): 133901

[72] O. Isaienko, E. Borguet. Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate[J]. Opt. Express, 2008, 16(6): 3949~3954

[73] K. Yamakawa, M. Aoyama, Y. Akahane et al.. Ultra-broadband optical parametric chirped-pulse amplification using an Yb: LiYF4 chirped-pulse amplification pump laser[J]. Opt. Express, 2007, 15(8): 5018~5023

[74] D. Kraemer, M. Cowan, R. Hua et al.. High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification[J]. J. Opt. Soc. Am. B, 2007, 24(4): 813~818

[75] E. Sorokin, S. Naumov, I. Sorokina. Ultrabroadband infrared solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron., 2005, 11(3): 690~712

[76] L. J. Waxer, V. Bagnoud, I. A. Begishev et al.. High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses[J]. Opt. Lett., 2003, 28(14): 1245~1247

[77] L. Cardoso, G. Figueira. Broadband amplification in non-linear crystals using controlled angular dispersion of signal beam[J]. Opt. Commun., 2005, 251(4-6): 405~414

[78] J. C. Wang, J. Wang. Experimental and theoretical analysis of white-light seeded, collinear phase-matching, femtosecond optical parametric amplifiers[J]. J. Opt. Soc. Am. B, 2004, 21(1): 45~56

[79] N. Ishii, L. Turi, V. S. Yakovlev et al.. Multimillijoule chirped parametric amplification of few-cycle pulses[J]. Opt. Lett., 2005, 30(5): 567~569

[80] M. Aoyama, K. Yamakawa, Y. Akahane et al.. 0.85 PW, 33 fs Ti: sapphire laser[J]. Opt. Lett., 2003, 28(17): 1594~1596

[81] K. Yamakawa, M. Aoyama, Y. Akahane et al.. Ultra-broadband optical parametric chirped-pulse amplification using an Yb: LiYF4 chirped-pulse amplification pump laser[J]. Opt. Express, 2007, 15(6): 5018~5023

[82] N. Ishii, X. Gu, T. Fuji et al.. Development of a few-cycle infrared OPCPA system and its use in high-harmonic generation[C]. CLEO, 2007, CMK: CMK2

[83] X. Gu, G. Marcus, Y. Deng et al.. Generation of carrier-envelope-phase-stable 2-cycle 740 μJ pulses at 2.1 μm carrier wavelength[J]. Opt. Express, 2009, 17(1): 62~69

[84] O. Chalus, P. K. Bates, J. Biegert. Design and simulation of few-cycle optical parametric chirped pulseamplification at mid-IR wavelengths[J]. Opt. Express, 2008, 16(26): 21297~21304

[85] C. Erny, L. Gallmann, U. Keller. High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared[J]. Appl. Phys. B, 2009, 96(2-3): 257~269

[86] C. Heese, C. Phillips, L. Gallmann et al.. Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg: LiNbO3 [J]. Opt. Lett., 2010, 35(14): 2340~2342

[87] L. S. Ma, R. Shelton, H. Kapteyn et al.. Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators[J]. Phys. Rev. A, 2001, 64(2): 021802

[88] R. Shelton, S. Foreman, L. Ma et al.. Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers[J]. Opt. Lett., 2002, 27(5): 312~314

[89] J. Kim, J. Cox, J. Chen et al.. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nat. Photonics, 2008, 2(12): 733~736

[90] T. Schibli, J. Kim, O. Kuzucu et al.. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Opt. Lett., 2003, 28(11): 947~949

[91] J. Kim, J. Chen, J. Cox et al.. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers[J]. Opt. Lett., 2007, 32(24): 3519~3521

[92] E. Hommel, H. Allen. Broadband sum-frequency generation with two regenerative amplifiers: temporal overlap of femtosecond and picosecond light pulses[J]. Anal. Sci., 2001, 17(1): 137~139

[93] L. Chen, S. Wen, Y. Wang et al.. Synchronization and relative timing jitter measurement of femtosecond and picosecond laser regenerative amplifiers[J]. IEEE J. Quantum Electron., 2010, 46(9): 1354~1359

[94] L. Chen, S. Wen, Y. Wang et al.. Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion[J]. Phys. Rev. A, 2010, 82(10): 043843

陈列尊, 文双春. 可调谐超短中红外激光脉冲的参变产生与放大及其最新进展[J]. 激光与光电子学进展, 2011, 48(8): 081902. Chen Liezun, Wen Shuangchun. Recent Advances and Methods of Optical Parametric Generation and Amplification for Tunable Ultra-Short Mid-Infrared Pulse[J]. Laser & Optoelectronics Progress, 2011, 48(8): 081902.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!