光子学报, 2018, 47 (3): 0314001, 网络出版: 2018-02-01  

基于非线性放大环镜锁模铥钬共掺光纤激光器的多孤子脉冲现象实验

Experiment of Multi-soliton Pulses in a Mode-locked Tm/Ho Co-doped Fiber Laser Based on a Nonlinear Amplified Loop Mirror
作者单位
重庆邮电大学 光电工程学院, 重庆高校光通信技术重点实验室, 重庆 400065
摘要
利用非线性放大环镜作为人工可饱和吸收体, 在铥钬共掺光纤激光器中研究了多孤子脉冲现象.在同一泵浦功率不同偏振状态下, 实验不仅获得了稳定的单个孤子脉冲, 还观察到由单个孤子脉冲演化为2至4个孤子的锁模脉冲现象; 在保偏光运行条件下增加泵浦功率, 获得了孤子能量量化的演化过程.所得结果主要源于腔内弱的双折射效应等效的滤波器具有限制增益带宽和诱导多脉冲产生的作用.而调节偏振控制器对腔内增益的改变, 是不同类型多脉冲现象出现的主要原因.研究结果对2 μm波段非线性放大环镜光纤激光器多孤子锁模脉冲动力学特性的研究具有一定参考价值.
Abstract
The phenomenon of mutli-soliton pulse is studied in Tm/Ho-codoped fiber laser based on a nonlinear amplified loop mirror as an artificial saturable absorber. By simply adjusting the polarization angle of Polarization Controller (PC), the experiment not only obtained a stable single-soliton pulse, but also observed the pulse sequences of the two-soliton, three-soliton and four-soliton. Increase the pump power under polarization maintaining operation, the evolution of soliton energy quantization is also obtained. The weak birefringence effect in the cavity is important for limiting the gain bandwidth and inducing the generation of multi-soliton. Adjusting the PC is equivalent to changing the gain in the cavity, which is the main reason for the formation of different multiple pulses states. We believe that the results obtained will be helpful in the investigation of multi-soliton pulses dynamics in 2 μm mode-locked fiber lasers.
参考文献

[1] 刘鹏, 王天枢, 张鹏, 等. 基于非线性偏振旋转效应的多波长掺铥锁模光纤激光器[J]. 光子学报, 2016, 45(6): 06140003.

    LIU Peng, WANG Tian-shu, ZHANG Peng,et al. Multi-wavelength Thulium-doped mode-locking fiber laser based on nonlinear polarization rotation[J]. Acta Photonica Sinica, 2016, 45(6): 06140003.

[2] 夏林中, 杜戈果, 阮双琛, 等. 包层泵浦的高功率掺铥光纤激光器[J]. 光子学报, 2008, 37(6): 1089-1092.

    XIA Lin-zhong, DU Ge-guo, RUAN Shuang-chen,et al. Cladding pumped high power thulium doped fiber laser[J]. Acta Photonica Sinica, 2008, 37(6): 1089-1092.

[3] MAJEWSKL M R, JACKSON S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 2016, 41(10): 2173-2176.

[4] YANG Nan, TANG Yu-long, XU Jiang-qiu. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers[J]. Laser Physics Letters, 2015, 12(8): 085102.

[5] WANG Yu, ALAM S, OBRAZTSOVA E, et al. Generation of stretched pulses and dissipative solitons at 2 μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers[J]. Optics Letters, 2016, 41(16): 3864.

[6] YAN Zhi-yu, LI Xiao-hui, TANG Yu-long, et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution[J]. Optics Express, 2015, 23(4): 4369.

[7] RUDY C W, URBANEK K E, DIGONNET M J F, et al. Amplified 2 μm Thulium-doped all-fiber mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 2013, 31(11): 1809-1812.

[8] DORAN N J, WOOD. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56.

[9] FERMANN M E, HABERL F, HOFER M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754.

[10] NING Qiu-yi, LIU Hao, ZHENG Xu-wu, et al. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser[J]. Optics Express, 2014, 22(10): 11900.

[11] CUI Yu-dong. Carbon-nanotube-based passively mode-locked fiber lasers modulated with sub-loop[J]. International Journal for Light and Electron Optics, 2015, 126(6): 618-621.

[12] NIANG A, AMRANI F, SALHI M, et al. Rains of solitons in a figure-of-eight passively mode-locked fiber laser[J]. Applied Physics B, 2014, 116(3): 771-775.

[13] NICHOLSON J W, ANDREJCO M. A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser[J]. Optics Express, 2006, 14(18): 8160.

[14] LIU Shuo, YAN Feng-ping, FENG Ting, et al. Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror[J]. Applied Optics, 2014, 53(24): 5522.

[15] LIU Yang, LI Wen-xue, SHEN Xu-ling, et al. Square nanosecond mode-locked laser based on nonlinear amplifying loop mirror[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1932-1935.

[16] WEI Kai-hua, CHEN Tao, JIANG Pei-pei, et al. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output[J]. Optics Express, 2013, 21(21): 25364.

[17] WANG Tian-shu, WEI Yi-zhen, HU Kai, et al. All-fiber laser generating at 3.8 μm pumped by 1565 nm fiber laser and the second-order laser at 1.9 μm[J]. Microwave and Optical Technology Letters, 2014, 56(4): 848-850.

[18] 邢颍滨, 叶宝圆, 蒋作文, 等. 高效率掺Tm3+双包层光纤及光纤激光器的研制[J]. 物理学报, 2014, 63(1): 014209.

    XING Ying-bin, YE Bao-yuan, JIANG Zuo-wen, et al. Development of high efficiency Tm3+-doped fiber and Tm3+-doped fiber laser[J]. Acta Physica Sinica, 2014, 63(1): 014209.

[19] LI Jian-feng, ZHANG Zu-xing, SUN Zhong-yuan, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes[J]. Optics Express, 2014, 22(7): 7875.

[20] XU Yi, SONG Yu-li, DU Ge-guo, et al. Soliton dynamic patterns of a passively mode-locked fiber laser operating in a 2 μm region[J]. Laser Physics Letters, 2015, 12(4): 045108.

[21] XU Yi, SONG Yu-li, DU Ge-guo, et al. Dissipative soliton resonance in a wavelength-tunable Thulium-doped fiber laser with net-normal dispersion[J]. IEEE Photonics Journal, 2015, 7(3): 1-7.

[22] JIN Xiao-xi, WANG Xiong, WANG Xiao-lin, et al. Tunable multi-wavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror[J]. Applied Optics, 2015, 54(28): 8260-8264.

[23] WEI Huai, LI Bin, WEI Shi, et al. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers[J]. Scientific Reports, 2017, 7(1): 1292.

[24] CHOULI S, GRELU P. Soliton rains in a fiber laser: an experimental study[J].Physical Review A, 2010, 81(6): 063829.

[25] CHOULI S, GRELU P. Rains of solitons in a fiber laser[J].Optics Express, 2009, 17(14): 11776-11781.

[26] TANG Ding-yuan, ZHAO Lu-ming, ZHAO B,et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber laser[J]. Physical Review A, 2005, 72(4): 043816.

[27] HEEBNER J E, WONG V, SCHWEINSBEG, et al. Optical transmission characteristics of fiber ring resonators[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 726-730.

[28] HAYE P D, SCHLIESSER A, ARCIZET O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217.

[29] ZHAO Jun-qing, WANG Yun-hai, YAN Pei-guang, et al. An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses[J]. Laser Physics, 2013, 23(7): 075105.

[30] ZANG H, TANG Ding-yuan, WU X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 2009, 17(15): 12692-12697.

[31] ZHANG Han, TANG Ding-yuan, KNIZE R J, et al. Graphene mode-locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letter, 2010, 96(11): 111112.

王小发, 张俊红, 彭晓玲, 毛雪峰. 基于非线性放大环镜锁模铥钬共掺光纤激光器的多孤子脉冲现象实验[J]. 光子学报, 2018, 47(3): 0314001. WANG Xiao-fa, ZHANG Jun-hong, PENG Xiao-ling, MAO Xue-feng. Experiment of Multi-soliton Pulses in a Mode-locked Tm/Ho Co-doped Fiber Laser Based on a Nonlinear Amplified Loop Mirror[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0314001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!