光谱学与光谱分析, 2018, 38 (9): 2735, 网络出版: 2018-10-02   

气氧煤油发动机尾焰红外辐射特性研究

Study on the Infrared Radiation Characteristics of the GOX/KERO Engine Plume
作者单位
航天工程大学宇航科学与技术系, 北京 101416
摘要
提出了一种考虑碳烟颗粒的气氧煤油发动机尾焰红外辐射特性计算方法, 首先对气氧煤油发动机纯气相内流场进行计算, 然后以喷管喉部作为气体和固体碳烟颗粒的入口边界计算发动机尾焰流场, 最后以发动机流场参数分布为基础, 采用有限体积法和伪气体理论对发动机尾焰红外辐射特性进行计算。 进行了气氧煤油发动机点火实验, 并将计算结果与实验结果进行对比分析。 结果表明, 燃烧室内两个压力测量点的测量与计算误差分别为1.4%和3.4%, 燃烧室内计算温度与热力学计算误差为2.16%, 证明了燃烧室流场计算模型的准确性。 含有碳烟颗粒的尾焰流场计算结果与热像仪测量结果比较吻合, 证明了尾焰流场计算方法和模型的准确性。 4.3 μm波段尾焰红外成像计算结果与工作在4.3 μm波段的红外热像仪测量结果吻合比较一致, 证明了尾焰红外辐射特性计算方法和模型的准确性。
Abstract
A method for calculating infrared radiation characteristics of the gas oxygen/kerosene (GOX/KERO) engine plume considering soot particles was proposed, first of all, the simulation of engine internal flow field was carried out, and the plume flow field was calculated using the nozzle throat as the inlet boundary of the gas and carbon particles, infrared radiation characteristics of the engine plume were calculated with the finite volume method (FVM) and the pseudo-gas theory based on the field parameters. The ignition experiment of the gas oxygen/kerosene engine was carried out, and the calculated results were compared with the experiment results. It was found that, the pressure errors between measurement and calculation of two pressure measurement points in the chamber were 1.4% and 3.4%, the temperature error between thermodynamics and calculation in chamber 2.16%, which verified the accuracy of the chamber flow field calculation model. The calculation results of the plume flow field containing the soot particles were in good agreement with that of the thermal imager, and the accuracy of method and model of plume flow field calculationwas proved. The plume infrared imaging in the 4.3 μm band of the calculation was in good agreement with that of the thermal imager, and the accuracy of method and model of plume infrared radiation calculation.
参考文献

[1] De Flora M G, Bruno C. Analysis of Soot and of Its Radiative Power in Supercritical LOX/LHC Rocket Combustion Chambers. Tucson: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, AIAA 2005-4439.

[2] Alexeenko A A, Gimelshein N E, Levin D A, et al. Modeling of Radiation in Atlas Plume-Flow. Reno: 39th Aerospace Science Meeting & Exhibit, 2001, AIAA 2001-0355.

[3] Plastinin Yu, Karabadzhak G, Khmelinin B. Ultraviolet, Visible and Infrared Spectra Modeling for Solid and Liquid Fuel Rocket Exhausts. AIAA Paper 2001-0660, 2001.

[4] Plastinin Yu, Karabadzhak G, Khmelinin B, et al. Advanced Model for Soot Radiation in the Plume, 2002, AIAA 2002-0798.

[5] NIE Wan-sheng, CAI Hong-hua(聂万胜, 蔡红华). Journal of Equipment Academy(装备学院学报), 2017, 28(1): 47.

[6] LIU Zun-yang, SHAO Li, WANG Ya-fu, et al(刘尊洋, 邵 立, 汪亚夫, 等). Acta Optica Sinica(光学学报), 2013, 33(4): 0404001.

[7] NIE Wan-sheng, YANG Jun-hui, HE Hao-bo, et al(聂万胜, 杨军辉, 何浩波, 等). Journal of National University of Defense Technology(国防科技大学学报), 2005, 27(5): 91.

[8] HAO Jin-bo, DONG Shi-kui, TAN He-ping(郝金波, 董士奎, 谈和平). Journal of Infrared Millimeter Waves(红外与毫米波学报), 2003, 22(4): 246.

[9] SHUAI Yong, DONG Shi-kui, LIU Lin-hua(帅 永, 董士奎, 刘林华). Journal of Infrared Millimeter Waves(红外与毫米波学报), 2005, 24(2): 100.

[10] Feng Songjiang, Nie Wansheng, Xie Qingfen, et al. Numerical Simulation of Flow Field and Radiation of an Aluminized Solid-Propellant Rocket Multiphase Exhaust plume. Miami: 39th AIAA Thermophysics Conference, 2007: AIAA 2007-4415.

[11] Wang T S. Thermophysics Characterization of Kerosene Combustion. Denver: 34th AIAA Thermophysics Conference, 2000, AIAA 2000-2511, 1-11.

[12] Plastinin Yu A, Karabadzhak G F, Khmelinin B A, et al. Investigation of Soot Density in the LOX/Kerosene Engine Booster Exhaust of Atlas Ⅱ and Atlas Ⅲ from Remote Measurements of Radiation Intensity. Reno: 43rd AIAA Aerospace Science Meeting and Exhibit, 2005, AIAA 2005-769.

[13] Garrison M B, Ozawa T, Levin D A. An improved CO2, H2O and Soot Infrared Radiation Models for High Temperature Flows. Toronto: 36th AIAA Plasmadynamics and Lasers Conference, 2005: AIAA 2005-4777.

[14] Ludwig C B, Malkmus W, Reardon J E, et al. Handbook of Infrared Radiation from Combustion Gases. US: NASA SP-3080, 1973.

[15] Ferziger J H, Peric M. Computational Methods for Fluid Dynamics (Third Edition). Berlin: Springer, 2002. 110.

[16] Young S J. Journal of Quantitative Spectroscopy & Radiative Transfer, 1976, 18: 1.

[17] Gamache R R, Kennedy S, Hawkins R, et al. Journal of Molecular Structure, 2000, 517-518: 407.

蔡红华, 聂万胜, 苏凌宇, 石天一. 气氧煤油发动机尾焰红外辐射特性研究[J]. 光谱学与光谱分析, 2018, 38(9): 2735. CAI Hong-hua, NIE Wan-sheng, SU Ling-yu, SHI Tian-yi. Study on the Infrared Radiation Characteristics of the GOX/KERO Engine Plume[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2735.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!