光子学报, 2019, 48 (1): 0110001, 网络出版: 2019-01-27   

基于结构张量分析的弱小目标单帧检测

Dim Small Target Single-frame Detection Based on Structure Tensor Analysis
作者单位
南京理工大学 自动化学院,南京 210094
摘要
针对复杂场景图像由于背景边缘干扰和噪声导致弱小目标检测困难的问题, 提出了一种基于结构张量分析的弱小目标单帧检测方法.利用结构张量对不同局部结构的表示特性, 通过计算结构张量特征值矩阵和均值滤波得到点状和矩形状目标的结构张量响应图; 采用高斯差分带通滤波器计算灰度差分图; 通过归一化融合处理得到最终响应图; 采用自适应阈值分割得到目标位置.采用该方法对天空、海面等多种场景的红外图像和可见光图像进行实验, 并与典型方法对比, 结果表明该方法能够有效地抑制背景干扰和噪声、快速且准确地检测目标.
Abstract
The challenge of detecting the dim small target in complex scene is to suppress the edge interference and the noise. A dim small target single-frame detection method based on structure tensor analysis is proposed. By adopting the structure tensor, which can measure the different local structure information, the structure tensor response map is calculated by employing the eigenvalue matrix of the structure tensor and the mean filter. A gray difference map is computed by adopting difference of Gaussians band-pass filter. By normalizing and fusing the two maps, the final response map is obtained. The target can be detected by segmenting the final response map with an adaptive threshold. Experiments with the standard infrared and visible datasets are performed including the different scenes such as sky, sea etc. Results demonstrate that the proposed algorithm can suppress background and nosie effectively, and detect targets efficiently and accurately in comparison with several typical methods.
参考文献

[1] CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(1): 574-581.

[2] BAI X Z, ZHANG S, DU B B, et al. Survey on dim small target detection in clutter background: wavelet, inter-frame and filter based algorithms[J]. Procedia Engineering, 2011, 15: 479-483.

[3] 易翔,王炳健.基于多特征的快速红外弱小目标检测算法[J].光子学报,2017,46(6): 0610002.

    YI Xiang, WANG Bing-jian. Fast infrared and dim target detection algorithm based on multi-feature[J]. Acta Photonica Sinica, 2017, 46(6): 0610002.

[4] LI M, ZHANG T X, YANG W D, et al. Moving weak point target detection and estimation with three-dimensional double directional filter in IR cluttered background[J]. Optical Engineering, 2005, 44(10): 107007.

[5] 马文伟,赵永强,张国华,等.基于多结构元素形态滤波与自适应阈值分割相结合的红外弱小目标检测[J].光子学报,2011,40(7): 1020-1024.

    MA Wen-wei, ZHAO Yong-qiang, ZHANG Guo-hua, et al. Infrared dim target detection based on multi-structural element morphological filter combined with adaptive threshold segmentation[J]. Acta Photonica Sinica, 2011, 40(7): 1020-1024.

[6] XU Y H, ZHANG J H. Real-time detection algorithm for small space targets based on max-medianfilter[J]. Journal of Information & Computational Science, 2014, 11(4): 1047-1055.

[7] KIM S. Min-local-LoG filter for detecting small targets in cluttered background[J]. Electronics Letters, 2011, 47(2): 106-106.

[8] LEI B, WANG B, SUN G, et al. A fast detection method for small weak infrared target in complex background[C]. SPIE/COS Photonics Asia, 2016: 100301V.

[9] SHANG K, SUN X, TIAN J W, et al. Infrared small target detection via line-based reconstruction and entropy-induced suppression[J]. Infrared Physics & Technology, 2016, 76: 75-81.

[10] HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(12): 2168-2172.

[11] QIN Y, LI B. Effectiveinfrared small target detection utilizing a novel local contrast method[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(12): 1890-1894.

[12] WEI Y T, YOU X G, LI H.Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226.

[13] GAO C Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009.

[14] LIU D P, LI Z Z, LIU B, et al. Infrared small target detection in heavy sky scene clutter based on sparse representation[J]. Infrared Physics & Technology, 2017, 85: 13-31.

[15] DAI Y M, WU Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3752-3767.

[16] 李思俭,樊祥,朱斌,等.基于运动模糊复原技术的红外弱小目标检测方法[J].光学学报,2017,37(6): 0610001.

    LI Si-jian, FAN Xiang, ZHU Bing, et al. A method for small infrared targets detection based on the technology of motion blur recovery[J]. Acta Optica Sinica, 2017, 37(6): 0610001.

[17] LANDSTROM A. An approach to adaptive quadratic structuring functions based on the local structure tensor[C]. The 12th International Sysposium on Mathmatical Morphology and Its Applications to Signal and Image Processing, 2015, 9082: 729-740.

[18] WANG X, LV G F, XU L Z. Infrared dim target detection based on visual attention[J]. Infrared Physics & Technology, 2012, 55(6): 513-521.

[19] NIE J Y, QU S C, WEI Y T, et al. An infrared small target detection method based on multiscale local homogeneity measure[J]. Infrared Physics & Technology, 2018, 90: 186-194.

[20] GU Y F, WANG C, LIU B X, et al. A kernel-based nonparametric regression method for clutter removal in infrared small-target detection applications[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(3): 469-473.

赵高鹏, 李磊, 王建宇. 基于结构张量分析的弱小目标单帧检测[J]. 光子学报, 2019, 48(1): 0110001. ZHAO Gao-peng, LI Lei, WANG Jian-yu. Dim Small Target Single-frame Detection Based on Structure Tensor Analysis[J]. ACTA PHOTONICA SINICA, 2019, 48(1): 0110001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!