光子学报, 2018, 47 (11): 1128002, 网络出版: 2018-12-17   

四棱锥传感器在空间光干涉望远镜共相中的应用

Application of Pyramid Sensor for Co-phasing Space Optical Interferometric Telescope
作者单位
中国科学院上海天文台 光学天文技术研究室,上海200030
摘要
针对空间光干涉望远镜提出了一种基于四棱锥波前传感器的相位平移误差检测与闭环校正方法.该方法依次在三种不同波长条件下, 用四棱锥传感器检测两两子镜间的平移误差, 并依据实时测量结果控制子镜产生相应的校正平移量, 直到将平移误差校正到所用半波长的整数倍, 而后根据已知的波长数据和子镜平移量数据计算得到真实的平移误差, 进而对平移误差进行闭环校正.以两个子镜构成的空间望远镜为研究对象, 对该检测与闭环校正方法进行了仿真验证.仿真结果表明, 该方法可在500 μm范围内对相位平移误差进行准确闭环校正, 具有纳米级的精度与良好的重复性.
Abstract
An innovative piston error detecting and close loop correction method based on pyramid wavefront sensor was proposed for space optical interferometric telescope. Three different wavelengths are used in turn in the method, in which the pyramid sensor is used to measure the piston errors between sub-mirrors, and then the sub-mirrors are controlled to compensate the corresponding piston errors based on the real-time measurement results until the piston errors reach an integral multiple of half of the used wavelength. After that, the real values of piston error are calculated based the known data of wavelengths and quantities of piston compensation of sub-mirrors, and finally the piston errors can be controlled by closed loop correction. The proposed method was analyzed theoretically and researched by simulations in which a telescope with two sub-apertures was taken as research object. The results proved that the piston error between two sub-apertures can be soundly detected and corrected while the piston error is not more than 500 μm. In addition, the novel method meets the precision of nanometer and has good repeatability.
参考文献

[1] List of largest optical reflecting telescopes[EB/OL]. [2018-03-08]. https: //en.wikipedia.org/wiki/List_of_largest_optical_reflecting_telescopes.

[2] MEINEL A B, MEINEL M P. Large sparse aperture space optical systems[J]. Optical Engineering, 2002, 41(8): 1983-1994.

[3] ESA. About science & technology-missions[EB/OL]. [2018-03-08]. http: //sci.esa.int/home/51459-missions/.

[4] NASA. Featured missions & projects-astrophysics science division (660) [EB/OL]. [2018-0308]. https: //science.gsfc.nasa.gov/sed/index.cfm fuseAction=projects.featured&navOrgCode=660&navTab=nav_about_us.

[5] CHEETHAM A C, TUTHILL P G, SIVARAMAKRISHNAN A, et al. Fizeau interferometric cophasing of segmented mirrors[J]. Optics Express, 2012, 20(28): 29457-29471.

[6] 宋贺伦, 李华强, 鲜浩, 等. 低相干光源干涉系统在大口径拼接子镜间相位误差检测上的应用[J]. 光学学报, 2008, 28(8): 1523-1526.

    SONG He-lun, LI Hua-qiang, XIAN Hao, et al. Application of low-coherence-source interferometric system to phase error detection of segmented primary mirrors for large-aperture telescope[J]. Acta Optica Sinica, 2008, 28(8): 1523-1526.

[7] LOFDAHL M G, KENDRICK R L, MITCHELL K E, et al. Phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II Telescope[C]. SPIE,1998, 3356: 1190-1201.

[8] CHANAN G, TROY M, DEKENSF, et al. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm[J]. Applied Optics, 1998, 37(1): 140-55.

[9] 李斌, 吴建, 刘燕德, 等. 拼接镜主动共相实验研究[J]. 光子学报, 2018, 47(2): 0212003.

    LI Bin, WU Jian, LIU Yan-de, et al. Co-phasing experiment of active optics for segmented mirror[J]. Acta Photonica Sinica, 2018, 47(2): 0212003.

[10] SHI F, REDDING D, BOWERSC, et al. DCATT dispersed fringe sensor: modeling and experimenting with the transmissive phase plates[C]. SPIE, 2000, 4013: 757-762.

[11] SHI F, CHANAN G, OHARA C, et al. Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope[J]. Applied Optics, 2004, 43(23): 4474-4481.

[12] 王姗姗,朱秋东,曹根瑞. 空间拼接主镜望远镜共相位检测方法[J]. 光学学报, 2009, 29(9): 2435-2440.

    WANG Shan-shan, ZHU Qiudong, CAO Gen-rui. Cophasing methods of segmented space telescope[J]. Acta Optica Sinica, 2009, 29(9): 2435-2440.

[13] VERINAUD C, ESPOSITO S. Real-time phasing and co-phasing of a ground-based interferometer with a pyramid wavefront sensor[C]. European Southern Observatory Conference and Workshop Proceedings, 2002, 58: 153-160.

[14] ESPOSITO S, PINNA E, PUGLISI A, et al. Pyramid sensor for segmented mirror alignment[J]. Optics Letters, 2005, 30(19): 2572-2574.

[15] LI Bin, YU Wen-hao, TANG Jin-long, et al. Theory and experiment of phasing detection by use of two wavelengths[J]. Applied Optics, 2017, 56(1): 1-7.

[16] JIANG Jun-lun, ZHAO Wei-rui. Phasing piston error in segmented telescopes[J]. Optics Express, 2016, 24(17): 19123-19137.

[17] EASTWOOD R J, JOHNSON A M, GREENAWAY A H. Calculation and correction of piston phase aberration in synthesis imaging[J]. Journal of the Optical Society of America A-optics Image Science and Vision, 2009, 26(1): 195-205.

[18] 颜召军, 杨朋千, 陈欣扬. 无调制四棱锥波前传感器的光瞳像标定方法[J]. 光学学报, 2016, 36(6): 0601002.

    YAN Zhao-jun, YANG Peng-qian, CHEN Xin-yang. Pupil calibration method of mon-modulation pyramid wavefront sensor[J].Acta Optica Sinica, 2016, 36(6): 0601002.

颜召军, 郑立新, 王超燕, 蔡建清, 陈欣扬, 周丹. 四棱锥传感器在空间光干涉望远镜共相中的应用[J]. 光子学报, 2018, 47(11): 1128002. YAN Zhao-jun, ZHENG Li-xin, WANG Chao-yan, CAI Jian-qing, CHEN Xin-yang, ZHOU Dan. Application of Pyramid Sensor for Co-phasing Space Optical Interferometric Telescope[J]. ACTA PHOTONICA SINICA, 2018, 47(11): 1128002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!