红外与毫米波学报, 2012, 31 (4): 325, 网络出版: 2012-08-31  

不同背景介质下金属Cu光子晶体带隙

The band structures of metallic photonic crystals filled with different mediums
作者单位
1 中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院研究生院, 北京 100039
摘要
提出了一种利用全反射抑制二维光子晶体表面电磁波泄漏的方法,并计算了不同背景介质下的二维金属Cu光子晶体的带隙结构,得到了带隙结构与填充率间的关系曲线.计算方法采用时域有限差分,金属型光子晶体由Cu柱构成.分别计算了以空气为背景介质和以PMMA为背景介质的正方晶格金属型光子晶体的带隙结构.研究结果表明:以PMMA为背景介质的正方晶格金属型光子晶体与以空气为背景介质相比,第一带隙更窄,第二带隙中心频率更低,且在填充率大于0.70时将会出现第三带隙.这对进一步扩展这种光子晶体的应用具有良好的参考意义.
Abstract
A method is proposed to inhibit the leakage of electromagnetic waves on the surface of 2D photonic crystals using total internal reflection. The band structures of 2D metallic photonic crystals with different background mediums are analyzed. The band structures as a function of the filling factor are obtained via FDTD method. The metallic photonic crystals are composed of Cu columns. Two kinds of background media, air and PMMA, were selected in this study. The band structures of these two 2D square-lattice metallic photonic crystals were analyzed separately. The results indicate that the metallic photonic crystals filled with PMMA have a narrower first band gap and a lower second band gap than the metallic photonic crystals filled with air. A third band gap appears in the metallic photonic crystals with PMMA as the background medium when the filling factor reaches 0.70. This work provides a good reference for the application of photonic crystals.
参考文献

[1] ZHANG Li-Wei, ZHANG Zhi-Wen, LI Hai-Yang, et al. One-dimensional photonic crystals consisting of metamaterials based on microstrip transmission lines [J]. J. Infrared Millim. Waves (张利伟, 张冶文, 李海洋, 等. 基于基带传输线的由特异材料构成的一维光子晶体. 红外与毫米波学报), 2009, 28(1): 20-24.

[2] LIANG Hua-Feng, LAI Jian-Jun, PENG Zhong-Liang, et al. Narrow band infrared emitter based onf one-dimensional photonic crystals used for gas sensing [J]. J. Infrared Millim. Waves (梁华锋, 赖建军, 彭中良, 等. 用于气体传感的一维光子晶体窄带红外发射光源. 红外与毫米波学报), 2009, 28(6): 414-417.

[3] SUN Jia-Zhao, XING Huai-Zhong. Effect of line defects on the band of two dimensional square photonic crystal[J]. J. Infrared Millim. Waves(孙家兆, 邢怀中. 线缺陷对二维四方圆柱形介质光子晶体禁带的影响. 红外与毫米波学报), 2010, 29(5): 389-391.

[4] Poilasne G, Pouliguen P, Mahdjoubi K, et al. Experimental radiation pattern of dipole inside metallic photonic bandgap material [J]. Microwave and Optical Technology Letters, 1999, 22(1): 10-16.

[5] Aly A H, Ryus S W. Study of optical properties of metallic photonic crystal [C]. Proc of SPIE, 2007, 6722: 67221Z.

[6] Thevenot M, Reineix A, Jecko B. A new FDTD surface impedance formulism to study PBG structures [J]. Microwave and Optical Technology Letters, 1998, 18(3): 203-206.

[7] Chan C T. Existence of a photonic gap in periodic dielectric structures [J]. Phy Rev Lett, 1990, 65(25): 3152-3155.

[8] Leung K M, Liu Y F. Photo band structures: the plane-wave method [J]. Physical Review B, 1990, 4(11): 10188-10190.

[9] Zhang L J. Numerical characterization of electromagnetic band gap materials and applications in printed antennas and arrays [D]. University of California, 2000.

[10] Yu H, Yang D. Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings [J]. IEEE Trans On MTT, 1997, 45(3): 428-435.

[11] Pendry J B, Bell P M. Transfer matrix techniques for electromagnetic waves: Photonic band gap materials [C], 1996, 315: 203-228.

[12] GAO Ben-Qing. Finite difference time domain method [M]. Beijing: National Defence Industry Press (高本庆. 时域有限差分法. 北京:国防工业出版社), 1995.

[13] Chan C T, Yu Q I, Ho K M. Order-N spectral method for electromagnetic waves [J]. Phys Rev B, 1995, 51(23):16635-16642.

[14] Sakodak K, Kawai N, Ito T, et al. Photonic bands of metallic systems. I. Principle of calculation and accuracy [J]. Physical review B, 2001, 64(4): 045116.

[15] Gadot F, De L A, Lourtioz J M, et al. High-transmission defect modes in two-dimensional metallic photonic crystals [J]. Journal of applied physics, 1999, 85(12): 8499-8501.

[16] Temeikuran B, Bayindir M, Ozbay E, et al. Quasimetallic silicon micromachined photonic crystals [J]. Applied Physics Letters, 2001, 78(3): 264-266.

[17] YANG Guang-Jie, KONG Fan-Min, MEI Liang-Mo. Band gaps of photonic crystal composed of metallic cylinders [J]. Acta Photonica Sinica(杨光杰, 孔凡敏, 梅良模. 金属光子晶体禁带研究. 光子学报), 2007, 36(010): 1821-1823.

[18] YAN Bin-Ying, CHEN He-Ming. Band gap properties and defect characteristic of metallic photonic crystal in the Terahertz region [J]. Optics& Optoelectronic Technology (闫斌英, 陈鹤鸣. THz波段金属光子晶体的带隙及缺陷特性分析. 光学与光电技术), 2009, 7(3): 37-40.

[19] Born M, Wolf E. Principles of optics[M]. Pergamon Press,1975.

[20] Tada T, Poborchii V V, Kanayama T. Channel waveguides fabricated in 2D photonic crystals of Si nanopillars [J]. Microelectronic Engineering, 2002, 63(1-3): 259-265.

[21] YANG Bo, LIANG Jing-Qiu, LIANG Zhong-Zhu, et al. Study on the band gaps of 2-D metallic photonic crystals [J]. Laser & Infrared(杨波, 梁静秋, 梁中翥, 等. 二维金属型光子晶体带隙研究. 激光与红外), 2011, 41(3): 314-318.

[22] GE De-Biao, YAN Yu-Bo. Finite difference time domain method for electromagnetic waves [M]. 2nd ed. Xi'an: Xidian University Press (葛德彪, 闫玉波. 电磁波时域有限差分方法.) 第二版. 西安电子科技大学出版社, 2005: 45-113.

[23] Kady I E, Sigalas M M, Biswas R, et al. Metallic photonic crystals at optical wavelengths [J]. Phys Rev B, 2000, 62(23): 15299-15302.

杨波, 梁静秋, 梁中翥, 王维彪. 不同背景介质下金属Cu光子晶体带隙[J]. 红外与毫米波学报, 2012, 31(4): 325. YANG Bo, LIANG Jing-Qiu, LIANG Zhong-Zhu, WANG Wei-Biao. The band structures of metallic photonic crystals filled with different mediums[J]. Journal of Infrared and Millimeter Waves, 2012, 31(4): 325.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!