红外与激光工程, 2016, 45 (1): 0101001, 网络出版: 2016-04-05   

激光钠导引星技术研究进展

Progress on sodium laser guide star
作者单位
1 中国科学院理化技术研究所 激光物理与技术研究中心,北京 100190
2 中国科学院光电技术研究所 自适应光学实验室,四川 成都 610209
3 中国科学院国家天文台,北京 100012
引用该论文

许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓. 激光钠导引星技术研究进展[J]. 红外与激光工程, 2016, 45(1): 0101001.

Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 0101001.

参考文献

[1] Babcock H W. The possibility of compensating astronomical seeing[C]//Publications of the Astronomical Society of the Pacific, 1953, 65: 229-236.

[2] Hardy J W. Proc. Inst. Elect. Electron. Engrs[C]//Control designs for an adaptive optics system, 1978, 66: 651-697.

[3] Happer W, MacDonald G J, Max C E, et al. Atmospheric-turbulence compensating by resonant optical backscattering from the sodium layer in the upper atmosphere[J]. J Opt Soc Am A, 1994, 11: 263-276.

[4] Belenkii M S, Karis S J, Brown J M. Experimental validation of a technique to measure tilt from a laser guide star [J]. Optics Letters, 1999, 24: 637-639.

[5] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature (London), 1987, 328: 229-231.

[6] Jelonek M P, Fugate R Q, Lange W J, et al. Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser [J]. J Opt Soc Am A, 1994, 11 (2): 806-812.

[7] Max C E, Olivier S S, Friedman H W, et al. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277 (12): 1649-1652.

[8] Viswa Velur, Edward J K, Richard G D, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test [C]//SPIE, Advancements in Adaptive Optics, 2004, 5490: 1033-1040.

[9] Kuntschner, Harald. Operational concept of the VLT's adaptive optics facility and its instruments [C]//SPIE, 2012, 8448: 07-11.

[10] Yutaka Hayanoa, Yoshihiko Saitoa, Meguru Itoa, et al. The laser guide star facility for subaru telescope [C]//SPIE, 2006, 6272: 627247-1-627247-7.

[11] Allen K Hankla, Jarett Bartholomew, Ken Groff, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and gemini south telescopes [C]//SPIE, 2006, 6272: 62721G-1-62721G-9.

[12] Joyce R, Boyer C, Daggert L, et al. The laser guide star facility for the thirty meter telescope[C]//Advances in Adaptive Optics II, SPIE Proc, 2006, 6272: 1H1-1H6.

[13] Pfrommer Thomas, Hickson Paul, She Chiaoyao. A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies[J]. Geophysical Research Letters, 2009, 36: 1-5.

[14] Jian GeL, Jacobsena B P, Angel′ J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness [C]//SPIE, 1998, 3353: 242-253.

[15] Ungar P J, Weiss D S, Riis E, et al. Optical molasses and multilevel atoms: Theory[J]. J Opt Soc Am B, 1989, 6(11): 2058-2071.

[16] Rochester Simon M, Otarola Angel, Boyer Corinne. Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project [J]. Journal of the Optical Society of America B-Optical Physics, 2012, 29(8): 2176-2188.

[17] Avicola K, Brase J M, Morris J R, et al. Sodium-layer laser-guide-star experimental results[J]. J Opt Soc Am A, 1994, 11: 825-831.

[18] Chester S Cardner, Byron M Welsh, Laird A Thompson. Design and performance analysis of adaptive optical telescopes using laser guide stars [C]//Proceedings of the IEEE, 1990, 78(11): 1721-1743.

[19] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report [Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006, 25-25.

[20] Peter L W, David L M, Antonin H B, et al. The W. M. keck observatory laser guide star adaptive optics system: overview[C]//Publications of the Astronomical Society of the Pacific, 2006, 118: 000-000.

[21] Humphreys R A, Primmerman C A, Bradley L C, et al.Atmospheric-turbulence measurements using asynthetic beacon in the mesospheric sodium layer [J]. Opt Lett, 1991, 16: 1367-1369.

[22] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe [J]. Astron Astrophys, 1985, 152: 129-131.

[23] Joshua C Bienfang, Craig A Denman, Brent W Grime, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers [J]. Opt Lett, 2003, 28(22): 2219-2221.

[24] Craig A D, Paul D H, Gerald T M, et al. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26: 507-513.

[25] Craig A Denmana, Paul D Hillmana, Gerald T Moorea, et al. Realization of a 50-Watt facility-class sodium guidestar pump laser [C]//SPIE, 2005, 5707: 46-49.

[26] Céline d′Orgeville, Sarah Diggs, Vincent Fesquet, et al. Gemini south multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results[C]//SPIE, 2012, 8447: 84471Q-1-84471Q-21.

[27] Hideki Takami, Stephen Colleya, Matt Dinkinsa, et al. Status of subaru laser guide star AO system[C]//SPIE, 2006, 6272: 62720C1-C10.

[28] Yan Feng, Luke R Taylor, Domenico Bonaccini Calia. 25 W Raman -fiber -amplifier -based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.

[29] Luke R Taylor, Yan Feng, Domenico Bonaccini Calia. 50 W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.

[30] Christina B Olausson, Akira Shirakawa, Hiroki Maurayama, et al. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources[C]//SPIE, 2010, 7580: 758013-1-758013-12.

[31] Pennington D M, Dawson J W, Beach R J, et al. Compact fiber laser for 589 nm laser guide star generation [C]//CLEO Europe, 2005: 532-532.

[32] Surin A A, Larin S V. 14 W SHG in MgO:sPPLT at 589 nm from high power CW linearly polarized RFL [C]//Laser Optics, International Conference, 2014: 1-1.

[33] Dupriez P, Farrell C, Ibsen M, et al. 1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system[C]//SPIE, 2006, 6102: 61021G-1-61021G-6.

[34] Jeys T H. Development of a mesospheric sodium laser beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4: 133-133.

[35] Kibblewhite E J, Shi F. Design and field tests of an 8 W sum-frequency laser for adaptive optics[C]//SPIE, 1998, 3353: 300-319.

[36] Viswa Velur, Edward J Kibblewhite, Richard G Dekany, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test[C]//SPIE, 2004, 5490: 1033-1040.

[37] Jennifer E Roberts, Antonin H Bouchez, John Angione, et al. Facilitizing the palomar AO Laser Guide Star system [C]//SPIE, 2008, 7015: 70152S-1-10.

[38] Xie S, Bo Yong, Xu J, et al. A 7.5 W quasi-continuous-wave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal[J]. Appl Phys B, 2011, 102: 781-787.

[39] 许祖彦, 谢仕永, 薄勇, 等. 30 W级第二代钠信标激光器研究[J]. 光学学报, 2011, 31(9): 094208-1-094208-4.

    Xu Zuyan, Xie Shiyong, Bo Yong, et al. Investigation of 30 W-class second-generation sodium beacon laser[J]. Acta Optica Sinica, 2011, 31(9): 094208-1-094208-4. (in Chinese)

[40] Kai Wei, Yong Bo, Xianghui Xue, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[C]//SPIE, 2013, 8447: 84471R-1-84471R-7.

[41] Angel Otarola. On-sky tests of the TIPC prototype laser results from tests held at the Lijiang observatory[Z]. TIPC Technical Review, TMT. AOS. PRE. 13.028. DRF01, 2013.

[42] Otarola Angel, Hickson Paul, Bo Yong, et al. On-sky tests of a high-power pulsed-laser system for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2015: 22.

[43] 鲁燕华, 谢刚, 庞毓, 等. 340 mJ全固态钠信标激光器[J]. 中国激光, 2012, 39(7): 0708004-7.

    Lu Yanhua, Xie Gang, Pang Yu, et al. 340 mJ all solid state sodium beacon laser[J]. Chinese Journal of Lasers, 2012, 39(7): 0708004-7. (in Chinese)

[44] Yan Hualu, Xie Gang, Zhang Lei, et al. High energy all solid state sodium beacon laser with line width of 0.6 GHz [J]. Appl Phys B, 2015, 118: 253-259.

[45] 王锋, 陈天江, 雒仲祥, 等. 基于长脉冲光源的钠信标回光特性实验研究 [J]. 物理学报, 2014, 63(1): 014208-1-014208-6.

    Wang Feng, Chen Tianjiang, Luo Zhongxiang, et al. Experimental study on backscattering characteristics of sodium beacon based on a long pulse laser[J]. Acta Physica Sinica, 2014, 63(1): 014208-1-014208-6. (in Chinese)

[46] 刘杰, 王建立, 吕天宇, 等. 全固态589nm激光器及其钠导星激发亮度[J]. 光学 精密工程, 2014, 22(12): 3199-3204.

    Liu Jie, Wang Jianli, Lv Tianyu, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Optics and Precision Engineering, 2014, 22(12): 3199-3204. (in Chinese)

[47] Lei Zhang, Huawei Jiang, Shuzhen Cui, et al. Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier [C]//CLEO, 2014: 1-2.

[48] Yuan Y, Zhang L, Liu Y, et al. Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal[J]. China-Technological Sciences, 2013, 56(1): 125-128.

[49] 谭巍, 付小芳, 李志新, 等. 基于单波长外腔共振和频技术产生波长可调谐589 nm 激光及钠原子饱和荧光谱的测量[J]. 物理学报, 2013, 62(9): 094211-1-094211-6.

    Tan Wei, Fu Xiaofang, Li Zhixin, et al. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom[J]. Acta Physica Sinica, 2013, 62(9): 094211-1-094211-6. (in Chinese)

[50] Gao Z L, Liu S D, Liu J J, et al. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm[J]. Optics Express, 2013, 21(6): 7821-7827.

[51] 王禹凝. 高功率全固态589nm黄光激光器的研究[D]. 长春: 长春理工大学, 2012.

    Wang Yuning. Advances in all-solid-state yellow lasers at 589 nm[D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese)

[52] 朱海永, 张戈, 张耀举, 等. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究[J]. 物理学报, 2011, 60(9): 373-377.

    Zhu Haiyong, Zhang Ge, Zhang Yaoju, et al. LD end-pumped c-cut Nd:YVO4 laser at 589 nm generated by sef-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9): 373-377. (in Chinese)

[53] 李莉莎, 侯瑶, 陈秀艳, 等. 二极管侧面抽运双声光调Q 589 nm黄光激光器[J]. 激光技术, 2009, 33(3): 273-275.

    Li Lisha, Hou Yao, Chen Xiuyan, et al. Diode-side-pumped 589nm yellow laser with double acousto-optic Q-switche[J]. Laser Technology, 2009, 33(3): 273-275. (in Chinese)

[54] 梁兴波, 苑利钢, 姜东升, 等. 10.5 W准连续波589 nm黄光激光器[J]. 激光与红外, 2008, 38(9): 876-878.

    Liang Xingbo, Yuan ligang, Jiang Dongsheng, et al. 10.5 W quasi continuous wave yellow laser at 589 nm[J]. Laser & Infrared, 2008, 38(9): 876-878. (in Chinese)

[55] Pique Jean-Paul, Ioana C Moldovan, Vincent Fesquet, et al. Polychromatic Laser Guide Star using a single laser at 330 nm [C]//SPIE, 2006, 6272: 62723D-1-62723D-10.

[56] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report[Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006: 26-26.

许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓. 激光钠导引星技术研究进展[J]. 红外与激光工程, 2016, 45(1): 0101001. Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 0101001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!