光散射学报, 2018, 30 (4): 297, 网络出版: 2019-01-10  

表面等离激元辅助反应及其表征研究进展

The Advance for the Field of Surface Plasmon Assisted Reactions and Related Characterization
作者单位
厦门大学化学化工学院,固体表面物理化学国家重点实验室,能源材料化学协同创新中心,厦门,361005
摘要
金属纳米结构的表面等离激元共振效应能够显著提高金属对光的吸收。表面等离激元效应在金属表面产生增强电场的同时,产生大量的热和高于费米能级的热电子。这些效应可以极大的提高表面化学反应速率,甚至提高选择性,实现传统方法难以实现的反应。本文回顾了表面等离激元辅助反应中各种效应(包括光电场、热和热电子)对反应的作用,总结了高效表面等离激元辅助反应的原则。等离激元增强拉曼光谱由于具有既能通过表面等离激元引发反应,又能通过光谱观测反应的特点,因此在表征等离激元辅助反应方面具有独特的优势。最后从原位表征、界面调控和多外场协同等方面提出了展望。
Abstract
The surface plasmon resonance effect of metal nanostructures is able to significantly improve the absorption of light for metals.Consequently,the electric field can be enhanced on the surface,as well as the generation of heat and hot electrons with an energy higher than Fermi level.All of these effects can increase the rate of surface chemical reactions,even improve the selectivity and realize some reactions that cannot be achieved with conventional ways.Here we review the roles of various effects(including electric field,heat,and hot electrons) in the process of surface plasmon assisted reactions,and summarize the principle to realize surface plasmon assisted reactions with a high efficiency.Plasmon-enhanced Raman spectroscopies are of advantageous in characterizing surface plasmon assisted reactions,since they can both initiate the reaction and monitor the process.Finally we conclude by discussing the future from the aspects of in-situ characterization,control of interface and synergistic modulation of multiple external fields.
参考文献

[1] BRONGERSMA M L,HALAS N J,NORDLANDER P.Plasmon-induced hot carrier science and technology[J].Nat Nanotechnol,2015,10: 25-34.

[2] CHRISTOPHER P,MOSKOVITS M.Hot Charge carrier transmission from plasmonic nanostructures[J].Annu Rev Phys Chem,2017,68(1): 379-398.

[3] ZHANG X M,CHEN Y L,LIU R S,et al.Plasmonic photocatalysis[J].Rep Prog Phys,2013,76(4): 046401.

[4] BAFFOU G,QUIDANT R.Nanoplasmonics for chemistry[J].Chem Soc Rev,2014,43(11): 3898-3907.

[5] KALE M J,AVANESIAN T,CHRISTOPHER P.Direct photocatalysis by plasmonic nanostructures[J].ACS Catal,2014,4(1): 116-128.

[6] LINIC S,ASLAM U,BOERIGTER C,et al.Photochemical transformations on plasmonic metal nanoparticles[J].Nat Mater,2015,14: 567.

[7] LINIC S,CHRISTOPHER P,INGRAM D B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nat Mater,2011,10: 911.

[8] CHANDRASEKHARAN N,KAMAT P V.Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles[J].J Phys Chem B,2000,104(46): 10851-10857.

[9] CHEN X,ZHU H Y,ZHAO J C,et al.Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports[J].Angew Chem Int Ed,2008,120(29): 5433-5436.

[10] AWAZU K,FUJIMAKI M,ROCKSTUHL C,et al.A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J].J Am Chem Soc,2008,130(5): 1676-1680.

[11] UENO K,JUODKAZIS S,SHIBUYA T,et al.Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source[J].J Am Chem Soc,2008,130(22): 6928-6929.

[12] NEUMANN O,FERONTI C,NEUMANN A D,et al.Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles[J].Proc Natl Acad Sci USA,2013,110(29): 11677-11681.

[13] ADLEMAN J R,BOYD D A,GOODWIN D G,et al.Heterogenous catalysis mediated by plasmon heating[J].Nano Lett,2009,9(12): 4417-4423.

[14] WANG F,LI C,CHEN H,JIANG R,et al.Plasmonic harvesting of light energy for Suzuki coupling reactions[J].J Am Chem Soc,2013,135(15): 5588-5601.

[15] CHRISTOPHER P,XIN H,LINIC S.Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures[J].Nat Chem,2011,3: 467-472.

[16] GOVOROV A O,RICHARDSON H H.Generating heat with metal nanoparticles[J].Nano Today,2007,2(1): 30-38.

[17] YANG H,HE L Q,HU Y W, et al.Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@ Pt nanoparticles[J].Angew Chem Int Ed,2015,127(39): 11624-11628.

[18] BONN M,FUNK S,HESS C,et al.Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001)[J].Science,1999,285(5430): 1042-1045.

[19] CHRISTOPHER P,XIN H,LINIC S.Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures[J].Nat Chem,2011,3(6): 467-472.

[20] MUKHERJEE S,LIBISCH F,LARGE N,et al.Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au[J].Nano Lett,2013,13(1): 240-247.

[21] MUKHERJEE S,ZHOU L,GOODMAN A M,et al.Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2[J].J Am Chem Soc,2014,136(1): 64-67.

[22] KE X,SARINA S,ZHAO J,et al.Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation[J].Chem Commun,2012,48(29): 3509-3511.

[23] MANJAVACAS A,LIU J G,KULKARNI V,et al.Plasmon-induced hot carriers in metallic nanoparticles[J].ACS Nano,2014,8(8): 7630-7638.

[24] KALE M J,AVANESIAN T,XIN H,et al.Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds[J].Nano Lett,2014,14(9): 5405-5412.

[25] WU K,CHEN J,MCBRIDE J R,et al.Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J].Science,2015,349(6248): 632-635.

[26] MUBEEN S,LEE J,SINGH N,et al.An autonomous photosynthetic device in which all charge carriers derive from surface plasmons[J].Nat Nanotechnol,2013,8(4): 247-251.

[27] OSHIKIRI T,UENO K,MISAWA H.Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation[J].Angew Chem Int Ed,2014,53(37): 9802-9805.

[28] MARIMUTHU A,ZHANG J,LINIC S.Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state[J].Science,2013,339(6127): 1590-1593.

[29] XIAO Q,SARINA S,WACLAWIK E R,et al.Alloying Gold with Copper Makes for a Highly Selective Visible-Light Photocatalyst for the Reduction of Nitroaromatics to Anilines[J].ACS Catal,2016,6(3): 1744-1753.

[30] HUANG Y F,ZHU H P,LIU G K,et al.When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement[J].J Am Chem Soc,2010,132(27): 9244-9246.

[31] HUANG Y F,ZHANG M,ZHAO L B,et al.Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J].Angew Chem Int Ed,2014,53(9): 2353-2357.

[32] VAN SCHROJENSTEIN LANTMAN E M,DEKERT T,MANK A J,et al.Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy[J].Nat Nanotechnol,2012,7(9): 583-586.

[33] SUN M,ZHANG Z,ZHENG H,et al.In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy[J].Sci Rep,2012,2: 647.

[34] ZENG Z C,HUANG S C,WU D Y, et al.Electrochemical tip-enhanced Raman spectroscopy[J].J Am Chem Soc,2015,137(37): 11928-11931.

[35] ZHANG R,ZHANG Y,DONG Z, et al.Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J].Nature,2013,498(7452): 82-86.

[36] ZHONG J H,JIN X,MENG L, et al.Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution[J].Nat Nanotechnol,2016,12: 132-136.

王翔, 黄声超, 张檬, 任斌. 表面等离激元辅助反应及其表征研究进展[J]. 光散射学报, 2018, 30(4): 297. WANG Xiang, HUANG Shengchao, ZHANG Meng, REN Bin. The Advance for the Field of Surface Plasmon Assisted Reactions and Related Characterization[J]. The Journal of Light Scattering, 2018, 30(4): 297.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!