强激光与粒子束, 2016, 28 (5): 055001, 网络出版: 2016-04-12   

微秒脉冲激励的大气压氦等离子体射流放电特性

Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse
沈苑 1,2王瑞雪 2,3章程 2,3方志 1邵涛 2,3
作者单位
1 南京工业大学 自动化与电气工程学院, 南京 210009
2 中国科学院 电工研究所, 北京 100190
3 中国科学院 电力电子与电气驱动重点实验室, 北京 100190
摘要
研究了不同电极结构以及放电参数对微秒脉冲激励的氦等离子体射流放电特性的影响。实验中采用不同管内径、不同电极形状、不同重复频率等参数,通过采集放电阶段的电流电压图、发光图像以及发射光谱等,对等离子体射流的电学特性和光学特性进行诊断。实验结果表明,随着管内直径的增大,氦等离子体射流的长度减小; 管内径为8 mm时,等离子体射流的击穿电压与放电电流最小,同时,其发射光谱中第二正带系N2,N+2和O等高能活性粒子的强度最高; 管内径为5 mm的等离子体射流的放电电流、功率及消耗的能量最大; 在相同实验条件下,针尖电极结构中的放电电流、消耗的功率还有发射光谱强度都较大; 随着重复频率的增加,氦等离子体射流的长度会增加,但击穿电压减小。
Abstract
In this paper, a microsecond pulse driven helium plasma jet was well characterized by different electrode configurations and discharge parameters. The influence of dielectric material diameter (3 mm, 5 mm and 8 mm), different electrode configuration and frequencies on the discharge properties and optical emissions were studied. The results showed that the length of plasma jet plume reduced when dielectric material diameter was increased. The breakdown voltage and discharge current were the smallest with a diameter of 8 mm, while the intensities of N2, N+2, O and OH species reached their peaks. The discharge current, consume power and energy were the highest when the diameter was 5 mm. What’s more, larger discharge current, consume power and emission intensity were observed with sharp tip needle electrode configuration. Higher pulse repetition frequency led to lower breakdown voltage and longer length.
参考文献

[1] Zhang Cheng, Shao Tao, Wang Ruixue, et al. A repetitive microsecond pulse generator for atmospheric pressure plasma jets[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1907-1915.

[2] 周亦骁, 方志, 邵涛. Ar/O2 和 Ar/H2O 中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. (Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O2 and Ar/H2O mixtures, ignition and combustion. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238)

[3] 章程, 许家雨, 邵涛, 等. 纳秒脉冲放电对聚对苯二甲酸乙二酯憎水改性[J]. 强激光与粒子束, 2014, 26: 045020. (Zhang Cheng, Xu Jiayu, Shao Tao, et al. Hydrophobic modification of polyethylene terephthalate using nanosecond-pulse dielectric barrier discharge. High Power Laser and Particle Beams, 2014, 26: 045020)

[4] Shao Tao, Yang Wenjing, Zhang Cheng, et al. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities[J]. Europhysics Letters, 2014, 107: 065004.

[5] Reuter S, Winter J, Schmidt-Bleker A, et al. Controlling the ambient air affected reactive species composition in the effluent of an argon plasma jet[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2788-2794.

[6] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038. (Wu Yun, Li Yinghong. Progress in research of plasma-assisted flow control, ignition and combustion. High Voltage Engineering, 2014, 40(7): 2024-2038)

[7] Fang Zhi, Yang Jingru, Liu Yuan, et al. Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet[J]. IEEE Trans Plasma Sci, 2013, 41(6): 1627-1634.

[8] Shao Tao, Zhou Yang, Zhang Cheng, et al. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754.

[9] 章程, 邵涛, 严萍. 纳秒脉冲介质阻挡放电在聚合物绝缘材料表面改性中的应用[J]. 绝缘材料, 2014 (2): 1-7. (Zhang Cheng, Shao Tao, Yan Ping. Application of nanosecond pulse dielectric barrier discharge in surface modification of polymer insulating materials. Insulating Materials, 2014 (2): 1-7)

[10] Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: Theory and experiments[J]. Physics Reports, 2014, 540(3): 123-166.

[11] Zhang Cheng, Shao Tao, Zhou Yang, et al. Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses[J]. Applied Physics Letters, 2014, 105: 044102.

[12] Lan C K, Chuang S I, Bao Q, et al. One-step argon/nitrogen binary plasma jet irradiation of Li4Ti5O12 for stable high-rate lithium ion battery anodes[J]. Journal of Power Sources, 2015, 275: 660-667.

[13] Shao Tao, Zhang Cheng, Wang Ruixue, et al. Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses[J]. IEEE Transactions on Plasma Science, 2015, 43(3): 726-732.

[14] Zhang Cheng, Shao Tao, Wang Ruixue, et al. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond-and microsecond-pulse generators in helium[J]. Physics of Plasmas (1994-present), 2014, 21: 103505.

[15] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究[J]. 物理学报, 2010, 59(5): 3324-3330. (Jiang Nan, Cao Zexian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330)

[16] 黄伟民, 邵涛, 张东东, 等. 小型高压重复频率微秒脉冲电源及其放电应用[J]. 强激光与粒子束, 2014, 26 : 045044. (Huang Weimin, Shao Tao, Zhang Dongdong, et al. A compact high voltage microsecond pulse power supply and its discharge application. High Power Laser and Particle Beams, 2014, 26 : 045044)

[17] 李文峰, 邵涛, 张东东, 等. 重复频率纳秒脉冲源程控脉冲发生器[J]. 强激光与粒子束, 2012, 24(5): 1186-1190. (Li Wenfeng, Shao Tao, Zhang Dongdong, et al. Program-controlled pulse generator for repetitive nanosecond-pulse source. High Power Laser and Particle Beams, 2012, 24(5): 1186-1190)

[18] Robert E, Sarron V, Darny T, et al. Rare gas flow structuration in plasma jet experiments[J]. Plasma Sources Science and Technology, 2014, 23: 012003.

[19] Karakas E, Koklu M, Laroussi M. Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets[J]. Journal of Physics D: Applied Physics, 2010, 43: 155202.

[20] Tsai J H, Hsu C M, Hsu C C. Numerical simulation of downstream kinetics of an atmospheric pressure nitrogen plasma jet using laminar, modified laminar, and turbulent models[J]. Plasma Chemistry and Plasma Processing, 2013, 33(6): 1121-1135.

[21] Mohamed A A H, Kolb J F, Schoenbach K H. Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen[J]. The European Physical Journal D, 2010, 60(3): 517-522.

[22] Wang R, Zhang C, Liu X, et al. Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328: 509-515.

[23] 章程, 顾建伟, 邵涛, 等. 大气压空气中重复频率纳秒脉冲气体放电模式研究[J]. 强激光与粒子束, 2014, 26: 045029. (Zhang Cheng, Gu Jianwei, Shao Tao, et al. Discharge mode in the repetitive nanosecond-pulse discharge in the atmospheric pressure air. High Power Laser and Particle Beams, 2014, 26: 045029)

[24] Gazeli K, Noёl C, Clément F, et al. A study of helium atmospheric-pressure guided streamers for potential biological applications[J]. Plasma Sources Science and Technology, 2013, 22: 025020.

[25] Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2010, 43: 075201.

[26] Shao Tao, Zhang Cheng, Niu Zheng, et al. Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J]. Applied Physics Letters, 2011, 98: 021503.

[27] Korolev Y D, Mesyats G A. Physics of pulsed breakdown in gases[M]. Ekaterinburg: URO-Press, 1998.

[28] Jiang N, Ji A, Cao Z. Atmospheric pressure plasma jet: effect of electrode configuration, discharge behavior, and its formation mechanism[J]. Journal of Applied Physics, 2009, 106: 013308.

[29] Hsu C C, Yang Y J. The increase of the jet size of an atmospheric-pressure plasma jet by ambient air control[J]. IEEE Transactions on Plasma Science, 2010, 38(3): 496-499.

沈苑, 王瑞雪, 章程, 方志, 邵涛. 微秒脉冲激励的大气压氦等离子体射流放电特性[J]. 强激光与粒子束, 2016, 28(5): 055001. Shen Yuan, Wang Ruixue, Zhang Cheng, Fang Zhi, Shao Tao. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse[J]. High Power Laser and Particle Beams, 2016, 28(5): 055001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!