光学 精密工程, 2016, 24 (7): 1799, 网络出版: 2016-08-29   

无人机自主着陆纵向控制律设计

Design of longitudinal control law for small fixed-wing UAV during auto landing
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100039
摘要
针对无人机的自主高精度定点着陆, 应用自适应内模控制(AIMC)原理设计了自主着陆纵向飞行控制律。以轮式无人机为平台, 将纵向非线性模型解耦并线性化。然后, 以地速和下沉率为控制目标, 应用AIMC理论设计了纵向飞行控制律。通过对AIMC滤波参数进行自调整改善了系统的动态特性, 基于对模型的辨识增强了系统的鲁棒性。在顺逆风6 m/s的条件下对AIMC系统进行了数字仿真, 结果显示其落点精度达到前后向30 m范围内。与传统内模控制(IMC)系统相比, 提出的自适应内模控制(AIMC)系统在动态性能和落点精度等方面均有明显提高。最后, 搭建了半物理测试平台, 通过半物理仿真测试复现了系统数字仿真结果, 验证了系统功能的完整性和协调性。
Abstract
For the auto landing precisely of an Unmanned Aerial Vehicle(UAV), the longitudinal control law for the auto landing of the UVA was designed based on Adaptive Internal Model Control (AIMC) principle. By taking a small wheeled UVA as a working platform, the longitudinal nonlinear model was decoupled and linearized. Then, the ground speed and sink rate were selected as control targets and longitudinal control law was designed based on the AIMC and applied to control system design. The filter parameter was adjusted to improve the dynamic characteristics of the system and the model was identified to enhanced the robustness of the system. The AIMC system was simulated digitally under the conditions of ownwind or headwind in a speed of 6 m/s, and the results show that the landing precision of system is in a scope of 30 m for forward or backward directions. Finally, a hardware test platform was established to verify the simulation results and the hardware-in-loop-simulation (HILS) proves the harmony and integrality of the system.
参考文献

[1] 宋辉. 复杂条件下无人机自动着陆控制技术研究[D]. 南京: 南京航空航天大学, 2011.

    SONG H.Research on automatic landing control technologies for UAV under complex conditions [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.(in Chinese)

[2] 车军, 张新国.自动着陆精确轨迹跟踪控制[J].北京航空航天大学学报, 2005, 9(31): 975-979.

    CHE J, ZHANG X G. Exact trajectory tracking control of automatic landing [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 9(31): 975-979.(in Chinese)

[3] 张建宏, 张平.无人机自主精确着陆控制律设计及仿真研究[J].系统仿真学报, 2009, 21(3): 743-748.

    ZHANG J H, ZHANG P. Autonomous precise landing control law for UAV [J].Journal of System Simulation, 2009, 21(3): 743-748.(in Chinese)

[4] AGUSTIN G M, RODOLFO E, HABER G. Internal mode control based on neuro fuzzy system for network application [J].IEEE Transactions on Automatics Science and Engineering, 2009, 6(2): 367-372.

[5] 郭艳艳, 陈澜, 杨常伟. 无人机着陆抗风鲁棒H∞控制器设计研究[J]. 计算机测量与控制, 2010, 21(2): 348-350.

    GUO Y Y, CHEN L, YANG CH W. Design of a robust H∞ controller for UAV automatic landing under wind shear [J]. Computer Measurement &Control, 2010, 21(2): 348-350.(in Chinese)

[6] JIAQ L, WANG X M. Design of a robust H∞ controller for automatic landing system of an aircraft [J]. Flight Dynamics, 2003, 21(1): 32-35.

[7] SIEBERLING S, CHU Q P, MULDER J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction [J]. Journal of Guidance, Control and Dynamics, 2010, 33(6): 1732-1742.

[8] 陈华坤, 章卫国, 王新民. 舰载机纵向自动着舰控制系统设计[J]. 弹箭与制导学报, 2007, 27(1): 73-77.

    CHEN H K, ZHANG W G, WANG X M. Design of automatic control system for longitudian landing on carrier [J].Journal of projectiles, rockets, missiles and guidance, 2007, 27(1): 73-77.(in Chinese)

[9] 段镇, 高九州. 无人机滑跑线性化建模与增益调节纠偏控制[J]. 光学 精密工程, 2014, 22(6): 1507-1516.

    DUAN ZH, GAO J ZH.Linearized modeling and gain scheduling control for UAV taxiing [J]. Opt. Precision Eng., 2014, 22(6): 1507-1516.(in Chinese)

[10] 李迪, 陈向坚, 续志军. 增益自适应滑模控制器在微型飞行器飞行姿态控制中的应用[J].光学 精密工程, 2013, 21(5): 1183-1192.

    LI D, CHEN X J, XU ZH J. Gain adaptive sliding mode controller for flight attitude control MAV [J]. Opt. Precision Eeg., 2013, 21(5): 1183-1192.(in Chinese)

[11] 王洋, 张京娟. 基于自适应控制的无人机飞行控制系统研究[J]. 弹箭与制导学报, 2010, 30(4): 15-19.

    WANG Y, ZHANG J J. Research on flight control system based adaptive controller for UAV [J].Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(4): 15-19.(in Chinese)

[12] ALCANTARA S, PEDRET C, VILANOVA R, et al.. Generalized internal model control for balancing input/output disturbance response [J]. Ind Eng Chem Res., 2011, 50(19): 70-80.

[13] 蔡红明, 昂海松, 郑祥明. 基于自适应逆的微型飞行器飞行控制系统[J]. 南京航天航空大学学报, 2011, 43(2): 137-142.

    CAI H M, ANG H S, ZHENG X M. Flight control system of MAV based on adaptive dynamic inversion [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(2): 137-142.(in Chinese)

[14] 李艳辉, 历明, 周凌. 基于模型匹配的光电侦查无人机飞行控制器设计方法[J]. 红外与激光工程, 2015, 44(2): 693-670.

    LI Y H, LI M, ZHOU L. UAV flight controller design method based on model matching used for electro-optical reconnaissance[J]. Infrared and Laser Engineering, 2015, 44(2): 693-670.(in Chinese)

[15] 吴德伟, 胡奕明. 无人机自主着陆半实物仿真系统设计[J]. 系统仿真学报, 2008, 20(24): 6815-6820.

    WU D W, HU Y M. Design of hardware-in-the-loop simulation system to UAV automatic landing guidance[J]. Journal of Simulation, 2008, 20(24): 6815-6820.(in Chinese)

高九州, 贾宏光. 无人机自主着陆纵向控制律设计[J]. 光学 精密工程, 2016, 24(7): 1799. GAO Jiu-zhou, JIA Hong-guang. Design of longitudinal control law for small fixed-wing UAV during auto landing[J]. Optics and Precision Engineering, 2016, 24(7): 1799.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!