Photonics Research, 2018, 6 (9): 09000867, Published Online: Aug. 15, 2018  

Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics Download: 660次

Jian Liu 1,2,3Ka-Di Zhu 1,2,3,*
Author Affiliations
1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai 200240, China
2 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210000, China
Copy Citation Text

Jian Liu, Ka-Di Zhu. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics[J]. Photonics Research, 2018, 6(9): 09000867.

References

[1] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, 57: 783-826.

[2] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann. Surface-enhanced Raman scattering. J. Phys. Condens. Matter, 1992, 4: 1143-1212.

[3] M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, R. P. Van Duyne. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C, 2012, 116: 478-483.

[4] S. M. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102-1106.

[5] W. Zhu, K. B. Crozier. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun., 2014, 5: 5228.

[6] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc., 2008, 130: 12616-12617.

[7] D. Wang, W. Zhu, M. D. Best, J. P. Camden, K. B. Crozier. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett., 2013, 13: 2194-2198.

[8] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Lou, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498: 82-86.

[9] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 2016, 535: 127-130.

[10] P. Roelli, C. Galland, N. Piro, T. J. Kippenberg. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol., 2016, 11: 164-169.

[11] A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol., 2009, 4: 445-450.

[12] E. Gil-Santos, D. Ramos, A. Jana, M. Calleja, A. Raman, J. Tamayo. Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers. Nano Lett., 2009, 9: 4122-4127.

[13] H. Y. Chiu, P. Hung, H. W. C. Postma, M. Bockrath. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett., 2008, 8: 4342-4346.

[14] K. Jensen, K. Kim, A. Zettl. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol., 2008, 3: 533-537.

[15] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol., 2012, 7: 301-304.

[16] M. LaHaye, O. Buu, B. Camarota, K. Schwab. Approaching the quantum limit of a nanomechanical resonator. Science, 2004, 304: 74-77.

[17] S. Chun, Y. Kim, H. Jin, E. Choi, S. B. Lee, W. Park. A graphene force sensor with pressure-amplifying structure. Carbon, 2014, 78: 601-608.

[18] J. J. Li, K. D. Zhu. All-optical mass sensing with coupled mechanical resonator systems. Phys. Rep., 2013, 525: 223-254.

[19] J. J. Li, K. D. Zhu. Weighing a single atom using a coupled plasmon-carbon nanotube system. Sci. Tech. Adv. Mater., 2012, 13: 025006.

[20] A. Sakhaee-Pour, M. T. Ahmadian, R. Naghdabadi. Vibrational analysis of single-layered graphene sheets. Nanotechnology, 2008, 19: 085702.

[21] M. Sadeghi, R. Naghdabadi. Nonlinear vibrational analysis of single-layer graphene sheets. Nanotechnology, 2010, 21: 105705.

[22] R. Gillen, M. Mohr, J. Maultzsch. Symmetry properties of vibrational modes in graphene nanoribbons. Phys. Rev. B, 2010, 81: 205426.

[23] M. K. Schmidt, R. Esteban, A. Gonzalez-Tudela, G. Giedke, J. Aizpurua. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano, 2016, 10: 6291-6298.

[24] V. Giovannetti, D. Vitali. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A, 2001, 63: 023812.

[25] WallsD. F.MilburnG. J., Quantum Optics (Springer-Verlag, 1998), p. 124.

[26] BoydR. W., Nonlinear Optics (Academic, 2008).

[27] R. Narula, R. Panknin, S. Reich. Absolute Raman matrix elements of graphene and graphite. Phys. Rev. B, 2010, 82: 045418.

[28] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, P. L. McEuen. Electromechanical resonators from graphene sheets. Science, 2007, 315: 490-493.

[29] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, J. Hone. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol., 2009, 4: 861-867.

[30] A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, P. L. McEuen. Large-scale arrays of single-layer graphene resonators. Nano Lett., 2010, 10: 4869-4873.

[31] V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, M. M. Deshmukh. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology, 2010, 21: 165204.

[32] B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss, P. G. Collins. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science, 2007, 315: 77-81.

[33] K. L. Ekinci, Y. T. Yang, M. L. Roukes. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys., 2004, 95: 2682-2689.

[34] C. Jiang, B. Chen, J. J. Li, K. D. Zhu. Mass sensing based on a circuit cavity electromechanical system. J. Appl. Phys., 2011, 110: 083107.

Jian Liu, Ka-Di Zhu. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics[J]. Photonics Research, 2018, 6(9): 09000867.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!