Photonics Research, 2018, 6 (9): 09000867, Published Online: Aug. 15, 2018  

Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics Download: 660次

Jian Liu 1,2,3Ka-Di Zhu 1,2,3,*
Author Affiliations
1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai 200240, China
2 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210000, China
Figures & Tables

Fig. 1. (a) Schematic diagram of the suspended graphene nanoribbon placed in the surface plasmonic cavity with presence of a strong pump beam and a weak probe beam; G points the direction of the gravity. The Ne atoms are deposited onto the surface of the graphene sheet in a special evaporator. (b) Displacement pattern of the atoms in the graphene nanoribbon due to the fundamental in-plane flexural resonance mode.

下载图片 查看原文

Fig. 2. Energy level diagram of the SGR-plasmon optomechanical system, where M and c denote the number states of mechanical mode and plasmon cavity photon, respectively. The three pictures correspond to the physical processes of (a) Stokes scattering, (b) Rayleigh scattering, and (c) anti-Stokes scattering.

下载图片 查看原文

Fig. 3. Strength of Rayleigh scattering on the probing absorption spectrum as a function of the probe-pump detuning δc for different quality factors of the plasmon. We set Ep=0; other parameter values are Ωs=0.1  THz, γ=0.5  GHz.

下载图片 查看原文

Fig. 4. Plot of absorption spectrum as a function of probe-pump detuning with R=103  Å4·amu1, g=200  GHz, Qc=10, and Δp=0 for I=1,2,and3kW/cm2, respectively. Other parameter values are the same as in Fig. 3.

下载图片 查看原文

Fig. 5. Pump intensity dependence of the ratio between Raman and Rayleigh scattering strength with different optomechanical coupling rate g.

下载图片 查看原文

Fig. 6. Absorption spectra of the probe pulse as a function of δ before (black line) and after the binding events of one Ne atom (blue line) and 10 atoms (red line). The frequency shifts induced by additional masses can be well distinguished in the spectra. Here we choose R=103  Å4·amu1, I=1  kW/cm2. Other parameters used are the same as in Fig. 4.

下载图片 查看原文

Table1. Parameters of the Plasmon Optomechanical System Used in the Mass Measurement

ParameterUnitsValue
Width of SGR, wnm0.7
Length of the SGR, lnm6
Fundamental frequency of SGR, ωmGHz100
Frequency of the plasmon, ωcTHz330
Raman activity of F-mode, RÅ4  ·amu1103104
Volume of plasmon cavity, Vcμm31.5×106
Quality factor for SGR, QSGNull200
Quality factor for plasmon, QcNull10
Conservative quantum yield, ηNull0.01
Pump-cavity detuning, ΔpHz0
Air pressure, PTorr1
Temperature, TK300

查看原文

Jian Liu, Ka-Di Zhu. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics[J]. Photonics Research, 2018, 6(9): 09000867.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!