中国激光, 2012, 39 (s2): s214005, 网络出版: 2013-01-05   

大气温度、湿度和压强对星载激光雷达测量CO2浓度精度的影响

Effects of Atmosphere Temperature, Humidity and Pressure for a Space-Borne Lidar Measuring Atmosphere CO2 Concentrations
作者单位
1 中国科学院上海光学精密机械研究所, 上海市全固态激光与应用重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
研究了大气温度、湿度和压强的不确定性对于星载积分路径差分吸收(IPDA)激光雷达系统测量大气CO2柱线浓度精度的影响。介绍了测量大气CO2柱线浓度的基本原理和CO2吸收截面计算方法,理论分析并模拟计算了吸收峰(On-line)波段范围不同大气温度、湿度和压强的误差对于大气CO2柱线浓度反演精度的影响。对于给出的优化工作波长,在吸收峰波数为6361.2250 cm-1,吸收谷(Off-line)波数为6360.99 cm-1,温度不确定性为1 K、湿度不确定性为10%以及压强不确定性为0.001的条件下,综合导致的CO2柱线浓度测量误差为0.296×10-6,为高精度反演大气CO2柱线浓度提供了重要参考数据。
Abstract
The influences of atmospheric temperature, humidity and pressure uncertainties on space-borne integrated path differential absorption (IPDA) lidar measuring atmospheric column-averaged CO2 concentrations are studied. The column-averaged CO2 concentrations measurement principle and CO2 absorption cross section calculation method are presented. The influences of atmospheric temperature, humidity and pressure errors on retrieving CO2 concentrations around on-line CO2 absorption line are analyzed and simulations are implemented. For optimal IPDA lidar on-line and off-line wave number of 6361.2250 cm-1 and 6360.99 cm-1, the total column-averaged CO2 concentration measurement error is calculated to be 0.296×10-6 with temperature error of 1 K, humidity error of 10% and relative pressure error of 0.001. The result is important for retrieval of column-averaged CO2 concentration with high precision and lidar system parameters optimization.
参考文献

[1] European Space Agency (ESA), "A-SCOPE-Advanced Space Carbon and Climate Observation of Planet Earth, Report for Assessment"[EB/OL]. http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf, 2008

[2] Jerome Caron, Yannig Durand. Operating wavelengths optimization for a space borne lidar measuring atmospheric CO2[J]. Appl. Opt., 2009, 48(28): 5413~5422

[3] R. T. Menzies, M. T. Chahine. Remote atmospheric sensing with an airborne laser absorption spectrometer[J]. Appl. Opt., 1974, 13(12): 2840~2849

[4] G. Ehret, C. Kiemle, M. Wirth et al.. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis[J]. Appl. Phys. B, 2008, 90(3-4): 593~608

[5] David Crisp, Charles E. Miller, Philip L. DeCola. NASA orbiting carbon observatory: measuring the column averaged carbon dioxide mole fraction from space[J]. J. Appl. Remote Sens., 2008, 2(1): 023508

[6] Syed Ismail, Edward V. Browell. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis[J]. Appl. Opt., 1989, 28(17): 3603~3615

[7] L. S. Rothman, C. P. Rinsland, A. Goldman et al.. The HITRAN molecular spectroscopic database and Hawks (Hitran atmospheric workstation)[C]. SPIE 1998, 3375: 123~132

[8] NOAA-S/T 76-1562. U.S. Standard Atmosphere, 1976[S]. Washington .D.C: U.S. Government Printing Office, 1976

[9] J. Caron, Y. Durand, J.-L. Bezy et al.. Performance modeling for A-SCOPE, a space borne lidar measuring atmospheric CO2[J]. SPIE, 2009, 7479: 74790E

谢杨易, 刘继桥, 姜佳欣, 陈卫标. 大气温度、湿度和压强对星载激光雷达测量CO2浓度精度的影响[J]. 中国激光, 2012, 39(s2): s214005. Xie Yangyi, Liu Jiqiao, Jiang Jiaxin, Chen Weibiao. Effects of Atmosphere Temperature, Humidity and Pressure for a Space-Borne Lidar Measuring Atmosphere CO2 Concentrations[J]. Chinese Journal of Lasers, 2012, 39(s2): s214005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!