激光与光电子学进展, 2019, 56 (8): 080002, 网络出版: 2019-07-26   

激光三维成像中光电混频技术的研究进展 下载: 1236次

Research Progress of Photoelectric Mixing Technology in Laser Three-Dimensional Imaging
作者单位
航天工程大学, 北京 101416
引用该论文

卜禹铭, 曾朝阳, 杜小平, 宋一铄. 激光三维成像中光电混频技术的研究进展[J]. 激光与光电子学进展, 2019, 56(8): 080002.

Yuming Bu, Zhaoyang Zeng, Xiaoping Du, Yishuo Song. Research Progress of Photoelectric Mixing Technology in Laser Three-Dimensional Imaging[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080002.

参考文献

[1] 戴永江. 激光雷达技术[M]. 北京: 电子工业出版社, 2010: 2- 7.

    Dai YJ. Lidar technology[M]. Beijing: Electronic Industry Press, 2010: 2- 7.

[2] 赵一鸣, 李艳华, 商雅楠, 等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5): 4-22.

    Zhao Y M, Li Y H, Shang Y N, et al. Application and development direction of lidar[J]. Journal of Telemetry, Tracking and Command, 2014, 35(5): 4-22.

[3] 宋一铄, 杜小平, 曾朝阳. 国外空间目标激光三维成像雷达关键技术分析[J]. 装备学院学报, 2014, 25(1): 55-60.

    Song Y S, Du X P, Zeng Z Y. The key technology analysis of foreign 3D LADAR for space target[J]. Journal of Academy of Equipment, 2014, 25(1): 55-60.

[4] 杜小平, 赵继广, 曾朝阳, 等. 调频连续波激光探测技术[M]. 北京: 国防工业出版社, 2015: 92- 93.

    Du XP, Zhao JG, Zeng ZY, et al.FMCW laser detection technology[M]. Beijing: National Defense Industry Press, 2015: 92- 93.

[5] Davis Q V, Kulczyk W K. Optical and electronic mixing in an avalanche photodiode[J]. Electronics Letters, 1970, 6(2): 25.

[6] Kulczyk W K, Davis Q V. The avalanche photodiode as an electronic mixer in an optical receiver[J]. IEEE Transactions on Electron Devices, 1972, 19(11): 1181-1190.

[7] Seeds A J, Lenoir B. Avalanche diode harmonic photoelectric mixer[J]. IEE Proceedings J- Optoelectronics, 1986, 133(6): 353.

[8] Castagnet D. Avalanche-photodiode-based heterodyne optical head of a phase-shift laser range finder[J]. Optical Engineering, 2006, 45(4): 043003.

[9] Moutaye E R, Tap-Beteille H. CMOS avalanche photodiode embedded in a phase-shift laser rangefinder[J]. IEEE Transactions on Electron Devices, 2008, 55(12): 3396-3401.

[10] Song Y S, Du X P, Zeng Z Y. On the research of avalanche photodiodes-based heterodyne in FM/CW laser rangefinder[J]. Optik, 2014, 125(12): 2895-2898.

[11] McKeag W, Veeder T, Wang J X, et al. . New developments in HgCdTe APDs and LADAR receivers[J]. Proceedings of SPIE, 2011, 8012: 801230.

[12] McManamon P F, Banks P, Beck J, et al. . Comparison of flash lidar detector options[J]. Optical Engineering, 2017, 56(3): 031223.

[13] de Borniol E D, Rothman J, Guellec F, et al. . Active three-dimensional and thermal imaging with a 30-μM pitch 320× 256 HgCdTe avalanche photodiode focal plane array[J]. Optical Engineering, 2012, 51(6): 061305.

[14] Williams G M, Compton M, Ramirez D A, et al. Multi-gain-stage InGaAs avalanche photodiode with enhanced gain and reduced excess noise[J]. IEEE Journal of the Electron Devices Society, 2013, 1(2): 54-65.

[15] 王凡, 蒋书波, 胡佳琳. APD单光子探测的电路设计[J]. 电子器件, 2016, 39(5): 1093-1097.

    Wang F, Jiang S B, Hu J L, et al. Circuit design of single-photon detector based on APD[J]. Chinese Journal of Electron Devices, 2016, 39(5): 1093-1097.

[16] 邓光平, 刘昌举, 祝晓笑, 等. 一种弱光成像用AlGaN APD阵列的读出电路设计[J]. 半导体光电, 2013, 34(4): 569-572, 575.

    Deng G P, Liu C J, Zhu X X, et al. Readout IC for low-level light imaging AlGaN APD arrays[J]. Semiconductor Photoelectrics, 2013, 34(4): 569-572, 575.

[17] 陈国强, 张君玲, 王攀, 等. 碲镉汞e-APD焦平面数字化读出电路设计[J]. 红外与激光工程, 2014, 43(9): 2798-2804.

    Chen G Q, Zhang J L, Wang P, et al. Design of digital ROIC for HgCdTe E-APD FPA[J]. Infrared and Laser Engineering, 2014, 43(9): 2798-2804.

[18] Shen P H, Stead M R. Taysing-Lara M A, et al. Interdigitated finger semiconductor photodetector for photoelectric mixing[J]. Proceedings of SPIE, 2000, 4028: 426-436.

[19] Aliberti K, Shen H, Stead M R, et al. Modeling the optoelectronic mixing effect in metal-semiconductor-metal detectors[J]. Proceedings of SPIE, 2002, 4646: 127-137.

[20] Aliberti K, Shen H, Stann B, et al. Mixing characteristics of InAlAs/InGaAs metal-semiconductor-metal photoelectric mixers[J]. Proceedings of SPIE, 2003: 369-377.

[21] 张立臣, 汪韬, 尹飞, 等. 高响应度GaAs-MSM光电自混频面阵器件[J]. 激光与红外, 2011, 41(8): 925-928.

    Zhang L C, Wang T, Yin F, et al. Facture of high responsivity GaAs-MSM photoelectric self-mixing array[J]. Laser & Infrared, 2011, 41(8): 925-928.

[22] 余明权, 高剑波, 方照勋, 等. MSM激光距离成像雷达系统设计与实验研究[J]. 激光与红外, 2011, 41(6): 616-621.

    Yu M Q, Gao J B, Fang Z X, et al. Research on the design and experiment of MSM laser range imaging radar[J]. Laser & Infrared, 2011, 41(6): 616-621.

[23] Redman B, Ruff W, Giza M. Photon counting chirped AM ladar: Concept, simulation, and initial experimental results[J]. Proceedings of SPIE, 2006, 6214: 62140P.

[24] 张子静. GM-APD啁啾幅度调制激光雷达对遮蔽目标的成像研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 10- 18.

    Zhang ZJ. The research of the sheltered target imaging using chirped amplitude modulation ladar based on GM-APD[D]. Harbin: Harbin Institute of Technology, 2011: 10- 18.

[25] Zhang Z J, Wu L, Zhang Y, et al. Method to improve the signal-to-noise ratio of photon-counting chirped amplitude modulation ladar[J]. Applied Optics, 2013, 52(2): 274.

[26] Jack M, Chapman G, Edwards J, et al. Advances in ladar components and subsystems at Raytheon[J]. Proceedings of SPIE, 2012, 8353: 83532F.

[27] Itzler MA, EntwistleM, Jiang XD, et al. Geiger-mode APD single-photon cameras for 3D laser radar imaging[C]∥IEEE Aerospace Conference, March 1-8, 2014, Big Sky, MT, USA. New York: IEEE, 2014: 1- 12.

[28] 孙剑峰, 姜鹏, 张秀川, 等. 32×32面阵InGaAs Gm-APD激光主动成像实验[J]. 红外与激光工程, 2016, 45(12): 1206006.

    Sun J F, Jiang P, Zhang X C, et al. Experimental research of 32×32 InGaAs Gm-APD arrays laser active imaging[J]. Infrared and Laser Engineering, 2016, 45(12): 1206006.

[29] Ruff W C, Bruno J D, Kennerly S W, et al. Self-mixing detector candidates for an FM/CW ladar architecture[J]. Proceedings of SPIE, 2000, 4035: 152-163.

[30] 张爱民, 江南. 水下微光成像的ICCD光路耦合仿真[J]. 国外电子测量技术, 2013, 32(11): 17-22.

    Zhang A M, Jiang N. Simulation of ICCD optical coupling in underwater low-light-level imaging[J]. Foreign Electronic Measurement Technology, 2013, 32(11): 17-22.

[31] 徐茜茜. 微光ICCD的噪声特性测试与分析[D]. 南京: 南京理工大学, 2015: 25- 33.

    Xu QQ. Noise characteristic test and analysis of low light ICCD[D]. Nanjing: Nanjing University of Science and Technology, 2015: 25- 33.

[32] Verle WA, Kenneth AC, Philip WA, et al. EBAPS©: Nest generation, low power, digital night vision[C]∥Proceedings of Presented at the OPTRO International Symposium, May 9-12, 2005, Paris, France. Paris: Association Aéronautique et Astronautique de France, 2005: 1- 10.

[33] Stann B, Redman B C, Lawler W, et al. Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging[J]. Proceedings of SPIE, 2007, 6550: 655005.

[34] 宋德, 石峰, 李野. 基底均匀掺杂下EBAPS电荷收集效率的模拟研究[J]. 红外与激光工程, 2016, 45(2): 56-60.

    Song D, Shi F, Li Y. Simulation of charge collection efficiency for EBAPS with uniformly doped substrate[J]. Infrared and Laser Engineering, 2016, 45(2): 56-60.

[35] Gopalakrishnan GK, Burns WK, Bulmer CH. A LiNbO3 microwave-photoelectric mixer with linear performance[C]∥1993 IEEE MTT-S International Microwave Symposium Digest, June 14-18, 1993, Atlanta, GA, USA, USA. New York: IEEE, 1993: 1055- 1058.

[36] Gopalakrishnan G K, Burns W K, Bulmer C H. Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(12): 2383-2391.

[37] 赵丽君. 基于电光调制器的线性调制和微波光子变频技术研究[D]. 西安: 西安电子科技大学, 2014: 33- 41.

    Zhao LJ. Research on linear modulation and microwave photonic frequency conversion technology based on electro-optic modulator[D]. Xi'an:Xidian University, 2014: 33- 41.

[38] 王明娥. 高线性高载噪比微波光子技术研究[D]. 北京: 北京邮电大学, 2017: 18- 26.

    Wang ME. The research into high linear and high carrier-to-noise ratio microwave photonic technology[D]. Beijing: Beijing University of Posts and Telecom, 2017: 18- 26.

[39] 董雪莹, 徐恩明, 李凡, 等. 基于相位调制的线性化微波光子链路[J]. 光通信技术, 2018, 42(2): 55-58.

    Dong X Y, Xu E M, Li F, et al. Linearized microwave photonic link based on phase modulation[J]. Optical Communication Technology, 2018, 42(2): 55-58.

[40] Schmidt B, Tuvey S, Banks P S. 3D sensor development to support EDL (entry, descent, and landing) for autonomous missions to Mars[J]. Proceedings of SPIE, 2012, 8519: 851905.

[41] McManamon P. Review of ladar: A historic, yet emerging, sensor technology with rich phenomenology[J]. Optical Engineering, 2012, 51(6): 060901.

[42] Zhang P, Du X P, Zhao J G, et al. High resolution flash three-dimensional LIDAR systems based on polarization modulation[J]. Applied Optics, 2017, 56(13): 3889.

[43] 陈臻. 基于偏振调制的激光三维成像方法研究[D]. 北京: 中国科学院大学, 2017: 16- 23.

    ChenZ. Research on Laser 3D imaging based on polarization modulation[D]. Beijing: University of Chinese Academy of Sciences, 2017: 16- 23.

[44] 彭章贤. 面阵三维成像激光雷达接收试验系统研究[D]. 北京: 中国科学院大学, 2016: 29- 36.

    Peng ZX. Research on 3D array imaging lidar receiving test system[D]. Beijing: University of Chinese Academy of Sciences, 2016: 29- 36.

[45] 詹伟达. 大功率、高速率电光调制技术研究[D]. 长春: 长春理工大学, 2011: 19- 27.

    Zhan WD. Study on high-power and high-speed electro-optic modulation technology[D]. Changchun: Changchun University of Science and Technology, 2011: 19- 27.

[46] 王大帅. 大功率、高速率电光调制器驱动技术的研究[D]. 长春: 长春理工大学, 2009: 28- 34.

    Wang DS. Research on the driving technology of the high power and high rate electro-optic modulator[D]. Changchun: Changchun University of Science and Technology, 2009: 28- 34.

卜禹铭, 曾朝阳, 杜小平, 宋一铄. 激光三维成像中光电混频技术的研究进展[J]. 激光与光电子学进展, 2019, 56(8): 080002. Yuming Bu, Zhaoyang Zeng, Xiaoping Du, Yishuo Song. Research Progress of Photoelectric Mixing Technology in Laser Three-Dimensional Imaging[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!