光子学报, 2019, 48 (1): 0104001, 网络出版: 2019-01-27  

高响应度倍增型碳纳米管-有机红光探测器

High Responsiveness Multiply Carbon Nanotubes-organic Red Light Detector
作者单位
西安理工大学 自动化与信息工程学院, 西安 710048
引用该论文

安涛, 刘丹. 高响应度倍增型碳纳米管-有机红光探测器[J]. 光子学报, 2019, 48(1): 0104001.

AN Tao, LIU Dan. High Responsiveness Multiply Carbon Nanotubes-organic Red Light Detector[J]. ACTA PHOTONICA SINICA, 2019, 48(1): 0104001.

参考文献

[1] SARGENT E H. Infrared auantum dots[J]. Advanced Materials, 2005, 17(5): 515-522.

[2] HALLS J J M, PICHLER K, FRIEND R H, et al. Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Applied Physics Letters, 1996, 68(22): 3120-3122.

[3] JAYAWARDENA K D, ROZANSKI L J, MILLS C A, et al. Inorganics-in-organics′: recent developments and outlook for 4G polymer solar cells.[J]. Nanoscale, 2013, 5(18): 8411.

[4] NISMY N A, JAYAWARDENA K D, ADIKAARI A A, et al. Photoluminescence quenching in carbon nanotube-polymer/fullerene films: carbon nanotubes as exciton dissociation centres in organic photovoltaics[J]. Advanced Materials, 2011, 23(33): 3796-3800.

[5] PARK Y D, LIM J A, JANG Y,et al. Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors[J]. Organic Electronics, 2008, 9(3): 317-322.

[6] NICOLA F D, SALVATO M, CIRILLO C,et al. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells[J]. Carbon, 2017, 114: 402-410.

[7] DISSANAYAKE N M, ZHONG Z. Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic.[J].Nano Letters, 2011, 11(1): 286.

[8] GRECHKO M, YE Y, MEHLENBACHER R D,et al. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films.[J]. Acs Nano, 2014, 8(6): 5383-94.

[9] JI S M, TAKACS C J, SUN Y, et al. Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies[J]. Nano Letters, 2011, 11(3): 1036-1039.

[10] EBBESEN T W, Physicalproperties of carbon nanotubes[C]. APS March Meeting. APS March Meeting Abstracts, 1997.

[11] PAUL S, RAJBONGSHI B, BORA B, et al. Organic photovoltaic cells using MWCNTs[J]. New Carbon Materials, 2017, 32(1): 27-34.

[12] XU X, XU P, HAO Y, et al. Exploring the effects of optically generated dipoles on organic photodetector infrared detection[J]. Organic Electronics, 2017, 45: 222-226.

[13] LUER L, HOSEINKHANI S, POLLI D,et al. Size and mobility of excitons in (6, 5) carbon|[nbsp]|nanotubes[J]. Nature Physics, 2008, 5(1): 54-58.

[14] HEEGER A J, SARICIFTCI N S, NAMDAS E B. Semiconducting and metallic polymers[M]. Oxford University Press, 2011.

[15] GRONING O, KUTTEL O M, EMMENEGGER C, et al. Field emission properties of carbon nanotubes[J]. Journal of Vacuum Science & Technology B, 2000, 18(2): 665-678.

[16] NICOLA F D, CASTRUCCIP, SCARSELLI M,et al. Multi-fractal hierarchy of single-walled carbon nanotube hydrophobic coatings[J]. Scientific Reports, 2015, 5: 8583.

[17] 安涛, 涂传宝, 杨圣, 等. 基于PBDT-TT-F∶PCBM体异质结红光探测器的光电特性[J]. 发光学报, 2017, 38(12): 1643-1649.

    AN Tao, TU Chuan-bao, YANG Sheng, et al. Photovoltaic characteristics of PBDT-TT-F∶PCBM based bulk heterojunction red detector[J]. Chinese Journal of Luminescence, 2017, 38(12): 1643-1649.

[18] GUO L Q, LIU H C, LIU J H, et al. First-principles calculation of electronic structure and phonon spectrum of single-walled carbon nanotubes[J]. Journal of Synthetic Crystals, 2015, 44(12): 3777-3782.

[19] MCCARTHY B, COLEMAN J N, CZERW R, et al. A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer[J]. Journal of Physical Chemistry B , 2002, 106(9): 2210-2216.

[20] CARTHY B M, DALTON A B, COLEMAN J N, et al. Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions[J]. Chemical Physics Letters, 2001, 350(1-2): 27-32.

[21] ARRANZ-ANDRES J, BLAU W J. Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices[J]. Carbon, 2008, 46(15): 2067-2075.

[22] AMOLD M S, ZIMMERMAN J D, RENSHAW C K, et al. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors.[J]. Nano Letters, 2009, 9(9): 3354.

[23] GUILBERT A A, REYNOLDS L X, BRUNO A, et al. Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT: fullerene blend films for organic solar cells.[J]. Acs Nano, 2012, 6(5): 3868-3875.

[24] JANSSEN G, AGUIREE A, GOOVAERTS E, et al. Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents[J]. European Physical Journal Applied Physics, 2007, 37(3): 40-43.

[25] ARREDONDO B, DIOS C D, VERGAZ R, et al. Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture[J]. Organic Electronics, 2013, 14(10): 2484-2490.

[26] NISMY N A, JAYAWARDENA K D G I, ADIKAARI A A D T, et al. Nano-engineering of hybrid organic heterojunctions with carbon nanotubes to improve photovoltaic performance[J]. Organic Electronics, 2015, 22: 35-39.

[27] NIE R, DENG X, FENG L, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias.[J]. Small, 2017, 13(24): 1603260.

[28] WANG S, KHAFIZOV M, TU X, et al. Multiple exciton generation in single-walled carbon nanotubes[J]. Nano Letters, 2010, 10(7): 2381.

[29] BEARD M C, MIDGETT A G, HANNA M C, et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion[J]. Nano Letters, 2010, 10(8): 3019.

安涛, 刘丹. 高响应度倍增型碳纳米管-有机红光探测器[J]. 光子学报, 2019, 48(1): 0104001. AN Tao, LIU Dan. High Responsiveness Multiply Carbon Nanotubes-organic Red Light Detector[J]. ACTA PHOTONICA SINICA, 2019, 48(1): 0104001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!